Correlation between obesity, age and mortality for COVID-19 patients with acute respiratory distress syndrome supported by extracorporeal membrane oxygenation.
Correlation between obesity, age and mortality for COVID-19 patients with acute respiratory distress syndrome supported by extracorporeal membrane oxygenation.
Project description:BackgroundThe survival predictors and optimal mechanical ventilator settings in patients with severe acute respiratory distress syndrome (ARDS) undergoing extracorporeal membrane oxygenation (ECMO) are uncertain. This study was designed to investigate the influences of clinical variables and mechanical ventilation settings on the outcomes for severe ARDS patients receiving ECMO.MethodsWe reviewed severe ARDS patients who received ECMO due to refractory hypoxemia from May 2006 to October 2015. Serial mechanical ventilator settings before and after ECMO and factors associated with survival were analyzed.ResultsA total of 158 severe ARDS patients received ECMO were finally analyzed. Overall intensive care unit (ICU) mortality was 55.1%. After ECMO initiation, tidal volume, peak inspiratory pressure and dynamic driving pressure were decreased, while positive end-expiratory pressure levels were relative maintained. After ECMO initiation, nonsurvivors had significantly higher dynamic driving pressure until day 7 than survivors. Cox proportional hazards regression model revealed that immunocompromised [hazard ratio 1.957; 95% confidence interval (CI) 1.216-3.147; p = 0.006], Acute Physiology and Chronic Health Evaluation (APACHE) II score (hazard ratio 1.039; 95% CI 1.005-1.073; p = 0.023), ARDS duration before ECMO (hazard ratio 1.002; 95% CI 1.000-1.003; p = 0.029) and mean dynamic driving pressure from day 1 to 3 on ECMO (hazard ratio 1.070; 95% CI 1.026-1.116; p = 0.002) were independently associated with ICU mortality.ConclusionsFor severe ARDS patients receiving ECMO, immunocompromised status, APACHE II score and the duration of ARDS before ECMO initiation were significantly associated with ICU survival. Higher dynamic driving pressure during first 3 days of ECMO support was also independently associated with increased ICU mortality.
Project description:Neurologic complications following acute respiratory distress syndrome (ARDS) are well described, however, information on the neurologic outcome regarding peripheral nervous system complications in critically ill ARDS patients, especially those who received extracorporeal membrane oxygenation (ECMO) are lacking. In this prospective observational study 28 ARDS patients who survived after ECMO or conventional nonECMO treatment were examined for neurological findings. Nine patients had findings related to cranial nerve innervation, which differed between ECMO and nonECMO patients (p = 0.031). ECMO patients had severely increased patella tendon reflex (PTR) reflex levels (p = 0.027 vs. p = 0.125) as well as gastrocnemius tendon reflex (GTR) (p = 0.041 right, p = 0.149 left) were affected on the right, but not on the left side presumably associated with ECMO cannulation. Paresis (14.3% of patients) was only found in the ECMO group (p = 0.067). Paresthesia was frequent (nonECMO 53.8%, ECMO 62.5%; p = 0.064), in nonECMO most frequently due to initial trauma and polyneuropathy, in the ECMO group mainly due to impairments of N. cutaneus femoris lateralis (4 vs. 0; p = 0.031). Besides well-known central neurologic complications, more subtle complications were detected by thorough clinical examination. These findings are sufficient to hamper activities of daily living and impair quality of life and psychological health and are presumably directly related to ECMO therapy.
Project description:Extracorporeal membrane oxygenation (ECMO) is considered a salvage therapy in cases of severe acute respiratory distress syndrome (ARDS) with profound hypoxemia. However, the need for high-volume fluid resuscitation and blood transfusions after ECMO initiation introduces a risk of fluid overload. Positive fluid balance is associated with mortality in critically ill patients, and conservative fluid management for ARDS patients has been shown to shorten both the duration of mechanical ventilation and time spent in intensive care, albeit without a significant effect on survival. Nonetheless, few studies have addressed the influence of fluid balance on clinical outcomes in severe ARDS patients undergoing ECMO. In the current retrospective study, we examined the impact of cumulative fluid balance (CFB) on hospital mortality in 152 cases of severe ARDS treated using ECMO. Overall hospital mortality was 53.3%, and we observed a stepwise positive correlation between CFB and the risk of death. Cox regression models revealed that CFB during the first 3 days of ECMO was independently associated with higher hospital mortality (adjusted hazard ratio 1.110 [95% CI 1.027-1.201]; p = 0.009). Our findings indicate the benefits of a conservative treatment approach to avoid fluid overload during the early phase of ECMO when dealing with severe ARDS patients.
Project description:BackgroundMechanical power (MP) refers to the energy delivered by a ventilator to the respiratory system per unit of time. MP referenced to predicted body weight (PBW) or respiratory system compliance have better predictive value for mortality than MP alone in acute respiratory distress syndrome (ARDS). Our objective was to assess the potential impact of consecutive changes of MP on hospital mortality among ARDS patients receiving extracorporeal membrane oxygenation (ECMO).MethodsWe performed a retrospective analysis of patients with severe ARDS receiving ECMO in a tertiary care referral center in Taiwan between May 2006 and October 2015. Serial changes of MP during ECMO were recorded.ResultsA total of 152 patients with severe ARDS rescued with ECMO were analyzed. Overall hospital mortality was 53.3%. There were no significant differences between survivors and nonsurvivors in terms of baseline values of MP or other ventilator settings. Cox regression models demonstrated that mean MP alone, MP referenced to PBW, and MP referenced to compliance during the first 3 days of ECMO were all independently associated with hospital mortality. Higher MP referenced to compliance (HR 2.289 [95% CI 1.214-4.314], p = 0.010) was associated with a higher risk of death than MP itself (HR 1.060 [95% CI 1.018-1.104], p = 0.005) or MP referenced to PBW (HR 1.004 [95% CI 1.002-1.007], p < 0.001). The 90-day hospital mortality of patients with high MP (> 14.4 J/min) during the first 3 days of ECMO was significantly higher than that of patients with low MP (≦ 14.4 J/min) (70.7% vs. 46.8%, p = 0.004), and the 90-day hospital mortality of patients with high MP referenced to compliance (> 0.53 J/min/ml/cm H2O) during the first 3 days of ECMO was significantly higher than that of patients with low MP referenced to compliance (≦ 0.53 J/min/ml/cm H2O) (63.6% vs. 29.7%, p < 0.001).ConclusionsMP during the first 3 days of ECMO was the only ventilatory variable independently associated with 90-day hospital mortality, and MP referenced to compliance during ECMO was more predictive for mortality than was MP alone.
Project description:We aimed to describe practice patterns and outcomes in patients with extracorporeal membrane oxygenation (ECMO) support throughout the coronavirus 2019 (COVID-19) pandemic, with the hypothesis that mortality would improve as we accumulated knowledge and experience. We included 48 patients supported on veno-venous ECMO (VV-ECMO) at a single institution between April 2020 and December 2021. Patients were categorized into three waves based on cannulation date, corresponding to the wild-type (wave 1), alpha (wave 2), and delta (wave 3) variants. One hundred percent of patients in waves 2 and 3 received glucocorticoids, compared with 29% in wave 1 (p < 0.01), and the majority received remdesivir (84% and 92% in waves 2 and 3, vs. 35% in wave 1; p < 0.01). Duration of pre-ECMO noninvasive ventilation was longer in waves 2 and 3 (mean 8.8 days and 3.9 days, vs. 0.7 days in wave 1; p < 0.01), as was time to cannulation (mean 17.2 and 14.6 days vs. 8.8 days in wave 1; p < 0.01) and ECMO duration (mean 55.7 days and 43.0 days vs. 28.4 days in wave 1; p = 0.02). Mortality in wave 1 was 35%, compared with 63% and 75% in waves 2 and 3 (p = 0.05). These results suggest an increased prevalence of medically refractory disease and rising mortality in later variants of COVID-19.
Project description:BackgroundThe application of prone position (PP) in acute respiratory distress syndrome (ARDS) supported by venovenous extracorporeal membrane oxygenation (VV-ECMO) is controversial.ObjectivesTo evaluate the safety and efficacy of application of PP during VV-ECMO in patients with ARDS.MethodsThis was a single-center, retrospective study of patients who met the Berlin definition of ARDS, and were supported with VV-ECMO. We divided the patients into two groups. The prone group included patients who were supported by VV-ECMO, and experienced at least one period of PP, while those without PP during VV-ECMO were defined as the supine group. Propensity score matching (PSM) at a ratio of 1:1 was introduced to minimize potential confounders. The primary outcomes were the complications of PP and the change of arterial oxygen pressure/fraction of the inspiration (PaO2/FiO2) ratio after PP. The secondary outcomes were hospital survival, ICU survival, and ECMO weaning rate.ResultsFrom April 2013 to October 2020, a total of 91 patients met the diagnostic criteria of ARDS who were supported with ECMO. 38 patients (41.8%) received at least one period of PP during ECMO, while 53 patients (58.2%) were maintained in supine position during ECMO. 22 minor complications were reported in the prone group and major complications were not found. The other ECMO-related complications were similar between two groups. The PaO2/FiO2 ratio significantly improved after PP compared with before (174.50 (132.40-228.25) mmHg vs. 158.00 (122.93-210.33) mmHg, p < 0.001). PSM selected 25 pairs of patients with similar characteristics. Hospital survival or ICU survival did not differ between the two groups (40% vs. 28%, p = 0.370; 40% vs. 32%, p = 0.556). Significant difference of ECMO weaning rate between two groups was not found (56% vs. 32%, p = 0.087).ConclusionsPP during VV-ECMO was safe and could improve oxygenation. A large-scale and well-designed RCT is needed in the future.
Project description:Extracorporeal membrane oxygenation can potentially affect cerebral blood flow dynamics and consequently influence cerebral autoregulation. We applied wavelet cross-correlation (WCC) between multichannel cerebral oxyhemoglobin concentration (HbO(2)) and mean arterial pressure (MAP), to assess regional variations in cerebral autoregulation. Six infants on veno-arterial (VA) ECMO were studied during sequential changes in the ECMO flows. WCC between MAP and HbO(2) for each flow period and each channel was calculated within three different frequency (wavelet scale) bands centered around 0.1, 0.16, and 0.3 Hz chosen to represent low frequency oscillations, ventilation, and respiration rates, respectively. The group data showed a relationship between maximum WCC and ECMO flow. During changes in ECMO flow, statistically significant differences in maximum WCC were found between right and left hemispheres. WCC between HbO(2) and MAP provides a useful method to investigate the dynamics of cerebral autoregulation during ECMO. Manipulations of ECMO flows are associated with regional changes in cerebral autoregulation which may potentially have an important bearing on clinical outcome.
Project description:BackgroundCarbon monoxide (CO) is an endogenous signaling molecule that activates cytoprotective programs implicated in the resolution of acute respiratory distress syndrome (ARDS) and survival of critical illness. Because CO levels can be measured in blood as carboxyhemoglobin, we hypothesized that carboxyhemoglobin percent (COHb%) may associate with mortality.ObjectivesTo examine the relationship between COHb% and outcomes in patients with ARDS requiring venovenous extracorporeal membrane oxygenation (ECMO), a condition where elevated COHb% is commonly observed.DesignRetrospective cohort study.SettingAcademic medical center ICU.PatientsPatients were included that had ARDS on venovenous ECMO.Measurements and main resultsWe examined the association between COHb% and mortality using a Cox proportional hazards model. Secondary outcomes including ECMO duration, ventilator weaning, and hospital and ICU length of stay were examined using both subdistribution and causal-specific hazard models for competing risks. We identified 109 consecutive patients for analysis. Mortality significantly decreased per 1 U increase in COHb% below 3.25% (hazard ratio [HR], 0.35; 95% CI, 0.15-0.80; p = 0.013) and increased per 1 U increase above 3.25% (HR, 4.7; 95% CI, 1.5-14.7; p = 0.007) reflecting a nonlinear association (p = 0.006). Each unit increase in COHb% was associated with reduced likelihood of liberation from ECMO and mechanical ventilation, and increased time to hospital and ICU discharge (all p < 0.05). COHb% was significantly associated with hemolysis but not with initiation of hemodialysis or blood transfusions.ConclusionsIn patients with ARDS on venovenous ECMO, COHb% is a novel biomarker for mortality exhibiting a U-shaped pattern. Our findings suggest that too little CO (perhaps due to impaired host signaling) or excess CO (perhaps due to hemolysis) is associated with higher mortality. Patients with low COHb% may exhibit the most benefit from future therapies targeting anti-oxidant and anti-inflammatory pathways such as low-dose inhaled CO gas.