Project description:Vitamin D is commonly known for its properties of airway remodeling inhibition. Due to this, we decided to analyze the action of calcitriol with anti-asthmatic drugs in airway remodeling. The HFL1 cell line was treated with calcitriol, beclomethasone 17-propionate, montelukast sodium, LTD4 and TGF-β in different combinations. Real-time PCR was used to analyzed the expression of ACTA2, CDH-1, Vimentin, ADAM33, MMP-9 and CysLTR1 on the mRNA level, whereas Western blot was used to analyze gene expression on the protein level. One-way analysis variants, the Kruskal-Wallis test, Student's t-test or Welch's t-test were used for statistical analysis. Concerning the results, pre-treatment with calcitriol increased the inhibitory effect of beclomethasone 17-propionate and montelukast sodium on the expression of ACTA2 (p = 0.0072), Vimentin (p = 0.0002) and CysLTR1 (p = 0.0204), and 1,25(OH)2D3 had an influence on the effects of beclomethasone 17-propionate and montelukast sodium and of CDH1 expression (p = 0.0076). On the protein level, pre-treatment with calcitriol with beclomethasone 17-propionate and montelukast sodium treatment decreased ACTA2 expression in comparison to the LT (LTD4 and TGF-β) control group (p = 0.0191). Hence, our study not only confirms that vitamin D may inhibit airway remodeling, but also shows that vitamin D has a synergistic effect with anti-asthmatic drugs.
Project description:PurposeRecent studies have demonstrated that macrophage migration inhibitory factor (MIF) is of importance in asthmatic inflammation. The role of MIF in modulating airway remodeling has not yet been thoroughly elucidated to date. In the present study, we hypothesized that MIF promoted airway remodeling by intensifying airway smooth muscle cell (ASMC) autophagy and explored the specific mechanisms.MethodsMIF knockdown in the lung tissues of C57BL/6 mice was conducted by instilling intratracheally adeno-associated virus (AAV) vectors (MIF-mutant AAV9) into mouse lung tissues. Mice genetically deficient in the autophagy marker ATG5 (ATG5+/-) was used to detect the role of autophagy in ovalbumin (OVA)-asthmatic murine models. Moreover, to block the expression of MIF and CD74 in vitro models, inhibitors, antibodies and lentivirus transfection techniques were employed.ResultsFirst, MIF knockdown in the lung tissues of mice showed markedly reduced airway remodeling in OVA murine mice models. Secondly, ASMC autophagy was increased in the OVA-challenged models. Mice genetically deficient in the autophagy marker ATG5 (ATG5+/-) that were primed and challenged with OVA showed lower airway remodeling than genetically wild-type asthmatic mice. Thirdly, MIF can induce ASMC autophagy in vitro. Moreover, the cellular source of MIF which promoted ASMC autophagy was macrophages. Finally, MIF promoted ASMC autophagy in a CD74-dependent manner.ConclusionsMIF can increase asthmatic airway remodeling by enhancing ASMC autophagy. Macrophage-derived MIF can promote ASMC autophagy by targeting CD74.
Project description:Background and objectiveAirway remodeling in asthma refers to numerous structural changes in the airway in asthmatic patients, with thickening of the airway smooth muscle layer as its core feature. However, the nature and sources of the abnormally increased airway smooth muscle cells (ASMCs) in airway remodeling remain unclear. ASMCs play a key role in the pathogenesis of fatal asthma; therefore, it is important to clarify the properties and sources of these ASMCs responsible for asthmatic airway remodeling, which may provide a new direction for the precise treatment for asthma.MethodsWe performed a narrative review of the literature on PubMed, Web of Science, and Google Scholar databases searching for the cellular sources of ASMCs in asthmatic airway remodeling and their clinical relevance.Key content and findingsIt has long been thought that ASMCs are the result of abnormal proliferation of the native ASMCs in asthma; however, increasing evidence suggests that increased "ASMCs" may be due to the differentiation/transdifferentiation of other cells including mesenchymal stem cells (MSCs), myofibroblasts (MYFs), pericytes, and epithelial-mesenchymal transition (EMT). Recently, several pharmacological and biological therapies aimed at "reducing asthmatic ASMCs" have been developed, among which gallopamil, JQ1 [an inhibitor of the bromodomain and extra-terminal domain (BET) protein family], and histone deacetylase (HDAC) inhibitors can alleviate asthma airway remodeling and hyperresponsiveness and improve asthma symptoms in both mouse models and preclinical experiments.ConclusionsAs one of the core features of asthma, ASMCs are an important effector of airway remodeling. It has become extremely important to develop therapies for the reduction and prevention of the "ASMCs" on the basis of the properties and sources of "ASMCs". Many studies have shown that epigenetic regulation is closely related to the abnormal increase of ASMCs in asthma, and interfering with epigenetic regulation factors can reduce the increased smooth muscle cells. Although the epigenetic regulation of asthma is still in its nascent stage, epigenetic therapy targeting "ASMCs" may become another new strategy for asthma prevention and treatment.
Project description:BackgroundStudies that looked at asthma airway remodeling pathogenesis and prevention have led to the discovery of the rat sarcoma viral oncogene (RAS) signaling pathway as a key mechanism that controls airway smooth muscle cell (ASMC) proliferation. Baicalin has great anti-inflammatory, proliferation-inhibited, and respiratory disease-relieving properties. However, the inhibitory effects and mechanisms of baicalin on ASMC-mediated airway remodeling in mice are still poorly understood.MethodsAfter establishing the asthmatic mice model by ovalbumin (OVA) and interfering with baicalin, airway remodeling characteristics such as airway resistance, mRNA, and protein expression levels of remodeling-related cytokines were measured by histopathological assessment, quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Further efforts on detailed mechanisms were used antibody arrays to compare the expression and activation of proteins involved in the RAS signaling pathway. In addition, validation experiments were performed in ASMC proliferation model and low-expression cells of the target gene by using shRNA.ResultsIn OVA-induced asthmatic mice model, baicalin significantly reduced the infiltration of inflammatory cells in lung tissue, attenuated airway resistance, and decreased mRNA and protein expression levels of remodeling-related cytokines such as interleukin-13 (IL-13), vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-β1), matrix metallopeptidase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1). The results of antibody arrays involved in RAS signaling pathway revealed that OVA and baicalin administration altered the activation of protein kinase C alpha type (PKC-α), A-rapidly accelerated fibrosarcoma (A-RAF), mitogen-activated protein kinase 2 (MEK2), extracellular regulated MAP kinase (ERK), MAPK interacting serine/threonine kinase 1 (MNK1), and ETS transcription factor 1 (ELK1). The above results were further verified in the ASMC proliferation model. A-RAF silencing (shA-RAF) could promote ASMC proliferation and downregulate p-MEK2, p-ERK, p-MNK1, and p-ELK1 expression.ConclusionThe effects of baicalin against airway remodeling and ASMC proliferation might partially be achieved by suppressing the RAS signaling pathway. Baicalin may be a new therapeutic option for managing airway remodeling in asthma patients.
Project description:Individuals with chronic asthma show a progressive decline in lung function that is thought to be due to structural remodeling of the airways characterized by subepithelial fibrosis and smooth muscle hyperplasia. Here we show that the tumor necrosis factor (TNF) family member LIGHT is expressed on lung inflammatory cells after allergen exposure. Pharmacological inhibition of LIGHT using a fusion protein between the IgG Fc domain and lymphotoxin β receptor (LTβR) reduces lung fibrosis, smooth muscle hyperplasia and airway hyperresponsiveness in mouse models of chronic asthma, despite having little effect on airway eosinophilia. LIGHT-deficient mice also show a similar impairment in fibrosis and smooth muscle accumulation. Blockade of LIGHT suppresses expression of lung transforming growth factor-β (TGF-β) and interleukin-13 (IL-13), cytokines implicated in remodeling in humans, whereas exogenous administration of LIGHT to the airways induces fibrosis and smooth muscle hyperplasia, Thus, LIGHT may be targeted to prevent asthma-related airway remodeling.
Project description:BackgroundAirway remodeling is a poorly reversible feature of asthma which lacks effective therapeutic interventions. CD147 can regulate extracellular matrix (ECM) remodeling and tissue fibrosis, and participate in the pathogenesis of asthma. In this study, the role of CD147 in airway remodeling and activation of circulating fibrocytes was investigated in asthmatic mice.MethodsAsthmatic mouse model was established by sensitizing and challenging mice with ovalbumin (OVA), and treated with anti-CD147 or Isotype antibody. The number of eosinophils in bronchoalveolar lavage fluid (BALF) was examined by microscope, and the levels of interleukin-4 (IL-4), IL-5 and IL-13 in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The number of CD45+ and collagen I (COL-I)+ circulating fibrocytes in BALF was detected by flow cytometry. Lung tissue sections were respectively stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS) or Masson trichrome staining, or used for immunohistochemistry of CD31 and immunohistofluorescence of α-smooth muscle actin (α-SMA), CD45 and COL-I. The protein expression of α-SMA, vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), Fibronectin, and COL-I was determined by western blotting.ResultsAnti-CD147 treatment significantly reduced the number of eosinophils and the levels of IL-4, IL-13, and IL-5 in BALF, and repressed airway inflammatory infiltration and airway wall thickening in asthmatic mice. Anti-CD147 treatment also reduced airway goblet cell metaplasia, collagen deposition, and angiogenesis in asthmatic mice, accompanied by inhibition of VEGF and α-SMA expression. The number of CD45+COL-I+ circulating fibrocytes was increased in BALF and lung tissues of OVA-induced asthmatic mice, but was decreased by anti-CD147 treatment. In addition, anti-CD147 treatment also reduced the protein expression of COL-I, fibronectin, and TGF-β1 in lung tissues of asthmatic mice.ConclusionOVA-triggered airway inflammation and airway remodeling in asthmatic mice can be repressed by anti-CD147 treatment, along with inhibiting the accumulation and activation of circulating fibrocytes.
Project description:BackgroundMacrophage migration inhibitory factor (MIF) and GTPase dynamin-related protein 1 (Drp1)-dependent aberrant mitochondrial fission are closely linked to the pathogenesis of asthma. However, it is unclear whether Drp1-mediated mitochondrial fission and its downstream targets mediate MIF-induced proliferation of airway smooth muscle cells (ASMCs) in vitro and airway remodeling in chronic asthma models. The present study aims to clarify these issues.MethodsIn this study, primary cultured ASMCs and ovalbumin (OVA)-induced asthmatic rats were applied. Cell proliferation was detected by CCK-8 and EdU assays. Western blotting was used to detect extracellular signal-regulated kinase (ERK) 1/2, Drp1, autophagy-related markers and E-cadherin protein phosphorylation and expression. Inflammatory cytokines production, airway reactivity test, histological staining and immunohistochemical staining were conducted to evaluate the development of asthma. Transmission electron microscopy was used to observe the mitochondrial ultrastructure.ResultsIn primary cultured ASMCs, MIF increased the phosphorylation level of Drp1 at the Ser616 site through activation of the ERK1/2 signaling pathway, which further activated autophagy and reduced E-cadherin expression, ultimately leading to ASMCs proliferation. In OVA-induced asthmatic rats, MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP) treatment, suppression of mitochondrial fission by Mdivi-1 or inhibiting autophagy with chloroquine phosphate (CQ) all attenuated the development of airway remodeling.ConclusionsThe present study provides novel insights that MIF promotes airway remodeling in asthma by activating autophagy and degradation of E-cadherin via ERK/Drp1 signaling pathway, suggesting that targeting MIF/ERK/Drp1 might have potential therapeutic value for the prevention and treatment of asthma.
Project description:Asthma is a common chronic respiratory disease. The Qufeng Xuanbi formula (QFXBF), a Chinese herbal decoction, has shown efficacy in the management of asthma. The purpose of this study was to investigate the potential therapeutic effects of QFXBF in the treatment of asthma both in vitro and in vivo. Platelet-derived growth factor (PDGF)-induced airway smooth muscle cell (ASMC) proliferation and MTT assays were used to explore the effects of QFXBF on the proliferation of ASMCs. Moreover, 40 female BALB/c mice were randomly divided into five groups: control group, ovalbumin (OVA) group, high QFXBF group, low QFXBF group, and dexamethasone (DEX) group (n = 8 per group). A mouse allergic asthma model was established using the intranasally administered OVA sensitization method. Morphological changes in the lung tissue were examined by hematoxylin and eosin (H&E) staining and Masson's trichrome staining. Finally, the protein expression of alpha-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), phospho-mitogen-activated protein kinase (p-MEK1/2), mitogen-activated protein kinase (MEK1/2), phospho-extracellular signal-regulated kinases (p-ERK1/2), and extracellular signal-regulated kinases (ERK1/2) in ASMCs and lung tissue were determined by western blotting and immunofluorescent staining assays. PDGF significantly increased the viability of ASMCs. Compared with mice in the control group, the airway walls and airway smooth muscle of mice in the OVA group were thickened, and the number of inflammatory cells around the bronchus significantly increased. Moreover, the administration of QFXBF markedly inhibited the proliferation of ASMCs and alleviated the pathological changes induced by OVA. Furthermore, the protein expressions of p-ERK1/2, p-MEK1/2, PCNA, and α-SMA were significantly increased in OVA-treated mice and PDGF-treated ASMCs. Finally, treatment with QFXBF also significantly decreased the protein expression of p-ERK1/2, p-MEK1/2, α-SMA, and PCNA. QFXBF inhibited the proliferation of ASMCs by suppressing MEK/ERK signaling in PDGF-induced ASMCs and OVA-induced mice.
Project description:Emerging evidence demonstrates that pyroptosis has been implicated in the pathogenesis of asthma. GSDMD is the pyroptosis executioner. The mechanism of GSDMD in asthma remains unclear. The aim of this study was to elucidate the potential role of GSDMD in asthmatic airway inflammation and remodeling. First, we performed immunofluorescent staining and ELISA to detect the protein levels of N-GSDMD in the airway epithelium and IL-18, IL-1β in serum of both asthma patients and the healthy individuals. We demonstrated that N-GSDMD, IL-18, and IL-1β were significantly increased in mild asthma compared with that from the controls. Then, wild type and Gsdmd-knock out (Gsdmd-/-) mice were used to establish asthma model. We isolated primary macrophages and performed histopathological staining, ELISA, flow cytometry to define the roles of GSDMD in allergic airway inflammation and tissue remodeling in vivo. We observed that the production of N-GSDMD, IL-18, and IL-1β were enhanced in OVA-induced asthma mice model. The knockout of Gsdmd resulted in attenuated N-GSDMD, IL-18, and IL-1β production in both bronchoalveolar lavage fluid (BALF) and lung tissue in asthmatic mice. In addition, Gsdmd-deficiency mice exhibit a significantly reduction in airway inflammation and remodeling, which might be associated with reduced Th17 type inflammation response and M2 polarization. Third, we explored the underlying mechanism of GSDMD in asthma by bulk RNA-sequencing. We found GSDMD may improve asthmatic airway inflammation and remodeling through regulating macrophage adhesion and migration, and then lead to M2 polarization by targeting Notch signaling pathway. These findings demonstrated that GSDMD plays a critical role in the pathogenesis of allergic inflammation and tissue remodeling.