Project description:Blood stream infection (BSI) is a potentially lethal complication in patients receiving extracorporeal membrane oxygenation (ECMO). It may be particularly common in patients with veno-venous ECMO due to their long hospitalization in the intensive care unit. Given that these patients have concurrent indwelling central venous catheters (CVC), it is unclear whether the ECMO circuit, CVC, or both, contribute to BSI. This study evaluated the risk factors associated with BSI in patients receiving veno-venous ECMO in a single institution study of 61 patients from 2016 through 2019. All ECMO catheters and the circuit oxygenator fluid were aseptically collected and analyzed for microorganisms at the time of decannulation. New BSI was diagnosed in 15 (24.6%) patients and increased mortality by threefold. None of the ECMO catheters or oxygenator fluid were culture positive. BSI increased with CVC use of over 8 days and was significantly lowered when CVC were exchanged by day 8 compared with patients with exchanges at later points (15.0% vs. 42.8%, p = 0.02). Median length of CVC use in the BSI-negative and BSI-positive group were 6.3 ± 5.0 and 9.4 ± 5.1, respectively (p = 0.04). In summary, BSI is a potentially lethal complication in patients receiving ECMO. Indwelling CVC, not the ECMO circuitry, is the likely contributor for BSI, and exchanging CVC by day 8 can reduce the incidence of BSI.
Project description:The clinical tolerance of extracorporeal membrane oxygenation (ECMO) membrane changes in acute respiratory distress syndrome (ARDS) patients under veno-venous ECMO (VV-ECMO) has not been reported. The aim of this study was to describe the tolerance of membrane change. Patients requiring VV-ECMO were retrospectively included between March 2020 and May 2022. In case of membrane dysfunction or an increase in hemolysis markers or an alteration in gas exchange, a membrane change was performed. The primary outcome was a composite measure defined as the occurrence of at least one of the following events within 1 hour of membrane change: severe hypoxemia, hemodynamic collapse, bradycardia, arrhythmia, cardiac arrest, and death. During the study period, 70 patients required a VV-ECMO, 29 (41%) of whom died. Thirty-two patients required a membrane change for a total of 56 changes. The primary outcome occurred for 33 (59%) changes. Arterial desaturation <80% occurred for all complicated membrane changes and cardiac arrest concerned nine changes (16%). Low tidal volume (V T ), respiratory system compliance (Crs), PaO 2 , and high ECMO blood flow (Q ECMO ) were associated with poor tolerance of membrane change. Threshold values of 130 ml for V T , 9.3 cm H 2 O for Crs, 72 mm Hg for PaO 2 , and 3.65 L/minute for Q ECMO best determined the risk of poor tolerance of membrane change.
Project description:ObjectiveVeno-venous (V-V) extracorporeal membrane oxygenation (ECMO) is increasingly used to support patients with severe acute respiratory distress syndrome (ARDS). In case of additional cardio-circulatory failure, some experienced centers upgrade the V-V ECMO with an additional arterial return cannula (termed V-VA ECMO). Here we analyzed short- and long-term outcome together with potential predictors of mortality.DesignMulticenter, retrospective analysis between January 2008 and September 2021.SettingThree tertiary care ECMO centers in Germany (Hannover, Bonn) and Switzerland (Zurich).PatientsSeventy-three V-V ECMO patients with ARDS and additional acute cardio-circulatory deterioration required an upgrade to V-VA ECMO were included in this study.Measurements and main resultsFifty-three patients required an upgrade from V-V to V-VA and 20 patients were directly triple cannulated. Median (Interquartile Range) age was 49 (28-57) years and SOFA score was 14 (12-17) at V-VA ECMO upgrade. Vasoactive-inotropic score decreased from 53 (12-123) at V-VA ECMO upgrade to 9 (3-37) after 24 h of V-VA ECMO support. Weaning from V-VA and V-V ECMO was successful in 47 (64%) and 40 (55%) patients, respectively. Duration of ECMO support was 12 (6-22) days and ICU length of stay was 32 (16-46) days. Overall ICU mortality was 48% and hospital mortality 51%. Two additional patients died after hospital discharge while the remaining patients survived up to two years (with six patients being lost to follow-up). The vast majority of patients was free from higher degree persistent organ dysfunction at follow-up. A SOFA score > 14 and higher lactate concentrations at the day of V-VA upgrade were independent predictors of mortality in the multivariate regression analysis.ConclusionIn this analysis, the use of V-VA ECMO in patients with ARDS and concomitant cardiocirculatory failure was associated with a hospital survival of about 50%, and most of these patients survived up to 2 years. A SOFA score > 14 and elevated lactate levels at the day of V-VA upgrade predict unfavorable outcome.
Project description:BackgroundWe tested the effect of different blood flow levels in the extracorporeal circuit on the measurements of cardiac stroke volume (SV), global end-diastolic volume index (GEDVI) and extravascular lung water index derived from transpulmonary thermodilution (TPTD) in 20 patients with severe acute respiratory distress syndrome (ARDS) treated with veno-venous extracorporeal membrane oxygenation (ECMO).MethodsComparative SV measurements with transesophageal echocardiography and TPTD were performed at least 5 times during the treatment of the patients. The data were interpreted with a Bland-Altman analysis corrected for repeated measurements. The interchangeability between both measurement modalities was calculated and the effects of extracorporeal blood flow on SV measurements with TPTD was analysed with a linear mixed effect model. GEDVI and EVLWI measurements were performed immediately before the termination of the ECMO therapy at a blood flow of 6 l/min, 4 l/min and 2 l/min and after the disconnection of the circuit in 7 patients.Results170 pairs of comparative SV measurements were analysed. Average difference between the two modalities (bias) was 0.28 ml with an upper level of agreement of 40 ml and a lower level of agreement of -39 ml within a 95% confidence interval and an overall interchangeability rate between TPTD and Echo of 64%. ECMO blood flow did not influence the mean bias between Echo and TPTD (0.03 ml per l/min of ECMO blood flow; p = 0.992; CI - 6.74 to 6.81). GEDVI measurement was not significantly influenced by the blood flow in the ECMO circuit, whereas EVLWI differed at a blood flow of 6 l/min compared to no ECMO flow (25.9 ± 10.1 vs. 11.0 ± 4.2 ml/kg, p = 0.0035).ConclusionsIrrespectively of an established ECMO therapy, comparative SV measurements with Echo and TPTD are not interchangeable. Such caveats also apply to the interpretation of EVLWI, especially with a high blood flow in the extracorporeal circulation. In such situations, the clinician should rely on other methods of evaluation of the amount of lung oedema with the haemodynamic situation, vasopressor support and cumulative fluid balance in mind.Trial registrationGerman Clinical Trials Register (DRKS00021050). Registered 03/30/2020 https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017237.
Project description:Background The use of veno-venous extracorporeal membrane oxygenation (V-V ECMO) has rapidly increased in recent years. Today, applications of V-V ECMO include a variety of clinical conditions such as acute respiratory distress syndrome (ARDS), bridge to lung transplantation and primary graft dysfunction after lung transplantation. The purpose of the present study was to investigate in-hospital mortality of adult patients undergoing V-V ECMO therapy and to determine independent predictors associated with mortality. Methods This retrospective study was conducted at the University Hospital Zurich, a designated ECMO center in Switzerland. Data was analyzed of all adult V-V ECMO cases from 2007 to 2019. Results In total, 221 patients required V-V ECMO support (median age 50 years, 38.9% female). In-hospital mortality was 37.6% and did not statistically vary significantly between indications (P=0.61): 25.0% (1/4) for primary graft dysfunction after lung transplantation, 29.4% (5/17) for bridge to lung transplantation, 36.2% (50/138) for ARDS and 43.5% (27/62) for other pulmonary disease indications. Cubic spline interpolation showed no effect of time on mortality over the study period of 13 years. Multiple logistic regression modelling identified significant predictor variables associated with mortality: age [odds ratio (OR), 1.05; 95% confidence interval (CI): 1.02–1.07; P=0.001], newly detected liver failure (OR, 4.83; 95% CI: 1.27–20.3; P=0.02), red blood cell transfusion (OR, 1.91; 95% CI: 1.39–2.74; P<0.001) and platelet concentrate transfusion (OR, 1.93; 95% CI: 1.28–3.15; P=0.004). Conclusions In-hospital mortality of patients receiving V-V ECMO therapy remains relatively high. Patients’ outcomes have not improved significantly in the observed period. We identified age, newly detected liver failure, red blood cell transfusion and platelet concentrate transfusion as independent predictors associated with in-hospital mortality. Incorporating such mortality predictors into decision making with regards to V-V ECMO use may increase its effectiveness and safety and may translate into better outcomes.
Project description:BackgroundVeno-venous extracorporeal membrane oxygenation (ECMO) provides blood oxygenation and carbon dioxide removal in acute respiratory distress syndrome. However, during ECMO support, the native lungs still play an important role in gas exchange, functioning as a second oxygenator in series with ECMO. The hypoxic vasoconstriction mechanism diverts regional blood flow within the lungs away from regions with low oxygen levels, optimizing ventilation/perfusion matching. ECMO support has the potential to reduce this adaptive pulmonary response and worsen the ventilation/perfusion mismatch by raising venous oxygen partial pressure. Thus, the objective of this study was to evaluate the effect of ECMO on regional pulmonary perfusion and pulmonary hemodynamics during unilateral ventilation and posterior lung collapse.MethodsFive Agroceres pigs were instrumented, monitored and submitted to ECMO. We used the Electrical Impedance Tomography (EIT) to evaluate lung ventilation and perfusion in all protocol steps. Effects of ECMO support on pulmonary hemodynamics and perfusion involving two different scenarios of ventilation/perfusion mismatch: (1) right-lung selective intubation inducing collapse of the normal left lung and (2) dorsal lung collapse after repeated lung lavage. Data including hemodynamics, respiratory, lung perfusion/ventilation, and laboratory data over time were analyzed with a mixed generalized model using the subjects as a random factor.ResultsThe initiation of ECMO support provided a significant reduction in Mean Pulmonary Artery Pressure (PAPm) in both situations of ventilation/perfusion mismatch. However, distribution of lung perfusion did not change with the use of ECMO support.ConclusionsWe found that the use of ECMO support with consequent increase in venous oxygen pressure induced a significant drop in PAPm with no detectable effect on regional lung perfusion in different scenarios of ventilation/perfusion mismatch.
Project description:Introduction and methodsWe examined the relationship between 24-h pre- and post-cannulation arterial oxygen tension (PaO2) and arterial carbon dioxide tension (PaCO2) and subsequent acute brain injury (ABI) in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO) with granular arterial blood gas (ABG) data and institutional standardized neuromonitoring.ResultsEighty-nine patients underwent VV-ECMO (median age = 50, 63% male). Twenty (22%) patients experienced ABI; intracranial hemorrhage (ICH) was the most common diagnosis (n = 14, 16%). Lower post-cannulation PaO2 levels were significantly associated with ICH (66 vs. 81 mmHg, p = 0.007) and a post-cannulation PaO2 level < 70 mmHg was more frequent in these patients (71% vs. 33%, p = 0.007). PaCO2 parameters were not associated with ABI. By multivariable logistic regression, hypoxemia post-cannulation increased the odds of ICH (OR = 5.06, 95% CI:1.41-18.17; p = 0.01).ConclusionIn summary, lower oxygen tension in the 24-h post-cannulation was associated with ICH development. The precise roles of peri-cannulation ABG changes deserve further investigation, as they may influence the management of VV-ECMO patients.