Project description:BackgroundTranscranial direct current stimulation (tDCS) is a noninvasive neural control technology that has become a research hotspot. To facilitate further research of tDCS, the biosafety of 500 μA cathodal tDCS, a controversial parameter in rats was evaluated.Results24 animals were randomly divided into two groups: a cathodal tDCS group (tDCS, n = 12) and control group (control, n = 12). Animals in the tDCS group received 5 consecutive days of cathodal tDCS (500 μA, 15 min, once per day) followed by a tDCS-free interval of 2 days and 5 additional days of stimulation, totally two treatments of tDCS for a total of 10 days. Computational 3D rat model was adopted to calculate the current density distributions in brain during tDCS treatment. Essential brain functions including motor function and learning and memory ability were evaluated. Additionally, to estimate the neurotoxicity of tDCS, the brain morphology, neurotransmitter levels and cerebral temperature were investigated. Our results showed that the current density inside the brain was less than 20 A/m2 during tDCS treatment in computational model. tDCS did not affect motor functions and learning and memory ability after tDCS treatment. In addition, no significant differences were found for the tDCS group in hematology, serum biochemical markers or the morphology of major organs. Moreover, tDCS treatment had no effect on the brain morphology, neural structures, neurotransmitter levels or cerebral temperature.Conclusion500 μA cathodal tDCS as performed in the present study was safe for rodents.
Project description:Tourette syndrome is a neurodevelopmental disorder characterised by motor and phonic tics. For some, tics can be managed using medication and/or forms of behavioural therapy; however, adverse side effects and access to specialist resources can be barriers to treatment. In this sham-controlled brain stimulation study, we investigated the effects of transcranial direct current stimulation (tDCS) on the occurrence of tics and motor cortical excitability in individuals aged 16-33 years with Tourette syndrome. Changes in tics were measured using video recordings scored using the RUSH method (Goetz et al. in Mov Disord 14:502-506, 1999) and changes in cortical excitability were measured using single-pulse transcranial magnetic stimulation (spTMS) over the primary motor cortex (M1). Video recordings and spTMS measures were taken before and after 20 min of sham or active tDCS: during which cathodal current was delivered to an electrode placed above the supplementary motor area (SMA). Tic impairment scores, calculated from the video data, were significantly lower post-cathodal stimulation in comparison with post-sham stimulation; however, the interaction between time (pre/post) and stimulation (cathodal/sham) was not significant. There was no indication of a statistically significant change in M1 cortical excitability following SMA stimulation. This study presents tentative evidence that tDCS may be helpful in reducing tics for some individuals, and provides a foundation for larger scale explorations of the use of tDCS as a treatment for reducing tics.
Project description:Background and purposeTranscranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique for focal epilepsy. Because epilepsy is a disease affecting the brain network, our study was aimed to evaluate and predict the treatment outcome of cathodal tDCS (ctDCS) by analyzing the ctDCS-induced functional network alterations.MethodsEither the active 5-day, -1.0 mA, 20-min ctDCS or sham ctDCS targeting at the most active interictal epileptiform discharge regions was applied to 27 subjects suffering from focal epilepsy. The functional networks before and after ctDCS were compared employing graph theoretical analysis based on the functional magnetic resonance imaging (fMRI) data. A support vector machine (SVM) prediction model was built to predict the treatment outcome of ctDCS using the graph theoretical measures as markers.ResultsOur results revealed that the mean clustering coefficient and the global efficiency decreased significantly, as well as the characteristic path length and the mean shortest path length at the stimulation sites in the fMRI functional networks increased significantly after ctDCS only for the patients with response to the active ctDCS (at least 20% reduction rate of seizure frequency). Our prediction model achieved the mean prediction accuracy of 68.3% (mean sensitivity: 70.0%; mean specificity: 67.5%) after the nested cross validation. The mean area under the receiver operating curve was 0.75, which showed good prediction performance.ConclusionThe study demonstrated that the response to ctDCS was related to the topological alterations in the functional networks of epilepsy patients detected by fMRI. The graph theoretical measures were promising for clinical prediction of ctDCS treatment outcome.
Project description:Bipolar Disorder is costly and debilitating, and many treatments have side effects. Transcranial Direct Current Stimulation (tDCS) is a well-tolerated neuromodulation technique that may be a useful treatment for Bipolar Disorder if targeted to neural regions implicated in the disorder. One potential region is the left ventrolateral prefrontal cortex (vlPFC), which shows abnormally elevated activity during reward expectancy in individuals with Bipolar Disorder. We used a counterbalanced repeated measures design to assess the impact of cathodal (inhibitory) tDCS over the left vlPFC on reward circuitry activity, functional connectivity, and affect in adults with Bipolar Disorder, as a step toward developing novel interventions for individuals with the disorder. -1mA cathodal tDCS was administered over the left vlPFC versus a control region, left somatosensory cortex, concurrently with neuroimaging. Affect was assessed pre and post scan in remitted Bipolar Disorder (n = 27) and age/gender-matched healthy (n = 31) adults. Relative to cathodal tDCS over the left somatosensory cortex, cathodal tDCS over the left vlPFC lowered reward expectancy-related left ventral striatal activity (F(1,51) = 9.61, p = 0.003), and was associated with lower negative affect post scan, controlling for pre-scan negative affect, (F(1,49) = 5.57, p = 0.02) in all participants. Acute cathodal tDCS over the left vlPFC relative to the left somatosensory cortex reduces reward expectancy-related activity and negative affect post tDCS. Build on these findings, future studies can determine whether chronic cathodal tDCS over the left vlPFC has sustained effects on mood in individuals with Bipolar Disorder, to guide new treatment developments for the disorder.
Project description:Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.
Project description:The primary aim of our meta-analysis was to evaluate the effects of cathodal transcranial direct current stimulation (c-tDCS) on sensory and pain thresholds (STh and PTh) in healthy individuals and pain level (PL) in patients with chronic pain. Electronic databases were searched for c-tDCS studies. Methodological quality was evaluated using the PEDro and Downs and Black (D&B) assessment tools. C-tDCS of the primary motor cortex (S1) increases both STh (P<0.001, effect size of 26.84%) and PTh (P<0.001, effect size of 11.62%). In addition, c-tDCS over M1 led to STh increase (P<0.005, effect size of 30.44%). Likewise, PL decreased significantly in the patient group following application of c-tDCS. The small number of studies precluded subgroup analysis. Nevertheless, meta-analysis showed that in all groups (except c-tDCS of S1) active c-tDCS and sham stimulation produced significant differences in STh/PTh in healthy and PL in patient group. This review provides evidence for the site-specific effectiveness of c-tDCS in increasing STh/PTh in healthy individuals and decreasing PL in patients with chronic pain. However, due to small sample sizes in the included studies, our results should be interpreted with caution. Given that the level of blinding was not considered in the inclusion criteria, the results of the current study should be interpreted with caution.
Project description:ObjectiveCathodal transcranial direct current stimulation (C-tDCS) is generally assumed to inhibit cortical excitability. The parietal cortex contributes to multisensory information processing in the postural control system, and this processing is proposed to be different between the right and left hemispheres and sensory modality. However, previous studies did not clarify whether the effects of unilateral C-tDCS of the parietal cortex on the postural control system differ depending on the hemisphere. We investigated the changes in static postural stability after unilateral C-tDCS of the parietal cortex.MethodsTen healthy right-handed participants were recruited for right- and left-hemisphere tDCS and sham stimulation, respectively. The cathodal electrode was placed on either the right or left parietal area, whereas the anodal electrode was placed over the contralateral orbit. tDCS was applied at 1.5 mA for 15 min. We evaluated static standing balance by measuring the sway path length (SPL), mediolateral sway path length (ML-SPL), anteroposterior sway path length (AP-SPL), sway area, and the SPL per unit area (L/A) after 15-minute C-tDCS under eyes open (EO) and closed (EC) conditions. To evaluate the effects of C-tDCS on pre- and post-offline trials, each parameter was compared using two-way repeated-measures analysis of variance (ANOVA) with factors of intervention and time. A post-hoc evaluation was performed using a paired t-test. The effect sizes were evaluated according to standardized size-effect indices of partial eta-squared (ηp2) and Cohen's d. The power analysis was calculated (1-β).ResultsA significant interaction was observed between intervention and time for SPL (F (2, 27) = 4.740, p = 0.017, ηp2 = 0.260), ML-SPL (F (2, 27) = 4.926, p = 0.015, ηp2 = 0.267), and sway area (F (2, 27) = 9.624, p = 0.001, ηp2 = 0.416) in the EO condition. C-tDCS over the right hemisphere significantly increased the SPL (p < 0.01, d = 0.51), ML-SPL (p < 0.01, d = 0.52), and sway area (p < 0.05, d = 0.83) in the EO condition. In contrast, C-tDCS over the left hemisphere significantly increased the L/A in both the EC and EO condition (EO; p < 0.05, d = 0.67, EC; p < 0.05, d = 0.57).ConclusionThese results suggest that the right parietal region contributes to static standing balance through chiefly visual information processing during the EO condition. On the other hand, L/A increase during EC and EO by tDCS over the left parietal region depends more on somatosensory information to maintain static standing balance during the EC condition.
Project description:BACKGROUND:Progression of Parkinson's disease (PD) is characterised by motor deficits which eventually respond less to dopaminergic therapy and thus pose a therapeutic challenge. Deep brain stimulation has proven efficacy but carries risks and is not possible in all patients. Non-invasive brain stimulation has shown promising results and may provide a therapeutic alternative. OBJECTIVE:To investigate the efficacy of transcranial direct current stimulation (tDCS) in the treatment of PD. DESIGN:Randomised, double blind, sham controlled study. SETTING:Research institution. METHODS:The efficacy of anodal tDCS applied to the motor and prefrontal cortices was investigated in eight sessions over 2.5?weeks. Assessment over a 3 month period included timed tests of gait (primary outcome measure) and bradykinesia in the upper extremities, Unified Parkinson's Disease Rating Scale (UPDRS), Serial Reaction Time Task, Beck Depression Inventory, Health Survey and self-assessment of mobility. RESULTS:Twenty-five PD patients were investigated, 13 receiving tDCS and 12 sham stimulation. tDCS improved gait by some measures for a short time and improved bradykinesia in both the on and off states for longer than 3 months. Changes in UPDRS, reaction time, physical and mental well being, and self-assessed mobility did not differ between the tDCS and sham interventions. CONCLUSION:tDCS of the motor and prefrontal cortices may have therapeutic potential in PD but better stimulation parameters need to be established to make the technique clinically viable. This study was publicly registered (clinicaltrials.org: NCT00082342).
Project description:Background: Anorexia nervosa (AN) is a life-threatening illness with poor treatment outcomes. Although transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method, its effect in patients with AN remains unclear. Objective: This study investigated changes in maladaptive eating behavior, body mass index (BMI), and depression after 10 sessions of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC). Methods: In this double-blind, randomized controlled trial, 43 inpatients with AN were divided to receive either active (n = 22) or sham (n = 21) tDCS over the left DLPFC (anode F3/cathode Fp2, 2 mA for 30 min). All patients filled the Eating Disorder Examination Questionnaire (EDE-Q) and Zung Self-Rating Depression Scale (ZUNG), and their BMI was measured. These values were obtained repeatedly in four stages: (1) before tDCS treatment, (2) after tDCS treatment, (3) in the follow-up after 2 weeks, and (4) in the follow-up after 4 weeks. Results: Primary outcomes (EDE-Q) based on the ANOVA results do not show any between-group differences either after the active part of the study or in the follow-up. Secondary analysis reveals a reduction in some items of EDE-Q. Compared with sham tDCS, active tDCS significantly improved self-evaluation based on body shape (p < 0.05) and significantly decreased the need of excessive control over calorie intake (p < 0.05) in the 4-week follow-up. However, the results do not survive multiple comparison correction. In both sham and active groups, the BMI values improved, albeit not significantly. Conclusion: We did not observe a significant effect of tDCS over the left DLPFC on complex psychopathology and weight recovery in patients with AN. tDCS reduced the need to follow specific dietary rules and improved body image evaluation in patients with AN. Tests with a larger sample and different positions of electrodes are needed. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03273205.
Project description:Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and computational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity distribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity as moderators of tDCS induced effects.