Project description:The bacteriophage T4 baseplate is the control center of the virus, where the recognition of an Escherichiacoli host by the long tail fibers is translated into a signal to initiate infection. The short tail fibers unfold from the baseplate for firm attachment to the host, followed by shrinkage of the tail sheath that causes the tail tube to enter and cross the periplasmic space ending with injection of the genome into the host. During this process, the 6.5MDa baseplate changes its structure from a "dome" shape to a "star" shape. An in vitro assembled hubless baseplate has been crystallized. It consists of six copies of the recombinantly expressed trimeric gene product (gp) 10, monomeric gp7, dimeric gp8, dimeric gp6 and monomeric gp53. The diffraction pattern extends, at most, to 4.0Å resolution. The known partial structures of gp10, gp8, and gp6 and their relative position in the baseplate derived from earlier electron microscopy studies were used for molecular replacement. An electron density map has been calculated based on molecular replacement, single isomorphous replacement with anomalous dispersion data and 2-fold non-crystallographic symmetry averaging between two baseplate wedges in the crystallographic asymmetric unit. The current electron density map indicates that there are structural changes in the gp6, gp8, and gp10 oligomers compared to their structures when separately crystallized. Additional density is also visible corresponding to gp7, gp53 and the unknown parts of gp10 and gp6.
Project description:RNA polymerase II elongation complexes (ECs) were assembled from nuclear extract on immobilized DNA templates and analyzed by quantitative mass spectrometry. Time-course experiments showed that initiation factor TFIIF can remain bound to early ECs, while levels of core elongation factors Spt4-Spt5, Paf1C, Spt6-Spn1, and Elf1 remain steady. Importantly, the dynamic phosphorylation patterns of the Rpb1 C-terminal domain (CTD) and the factors that recognize them change as a function of postinitiation time rather than distance elongated. Chemical inhibition of Kin28/Cdk7 in vitro blocks both Ser5 and Ser2 phosphorylation, affects initiation site choice, and inhibits elongation efficiency. EC components dependent on CTD phosphorylation include capping enzyme, cap-binding complex, Set2, and the polymerase-associated factor (PAF1) complex. By recapitulating many known features of in vivo elongation, this system reveals new details that clarify how EC-associated factors change at each step of transcription.
Project description:BACKGROUND:CRISPR/Cas9 has wide application potentials in a variety of biological species including Trichoderma reesei, a filamentous fungus workhorse for cellulase production. However, expression of Cas9 heterologously in the host cell could be time-consuming and sometimes even troublesome. RESULTS:We tested two gene disruption methods in T. reesei using CRISPR/Cas9 in this study. The intracellularly expressed Cas9 led to unexpected off-target gene disruption in T. reesei QM9414, favoring inserting 9- or 12-bp at 70- and 100-bp downstream of the targeted ura5. An alternative method was, therefore, established by assembling Cas9 and gRNA in vitro, followed by transformation of the ribonucleoprotein complex with a plasmid containing the pyr4 marker gene into T. reesei TU-6. When the gRNA targeting cbh1 was used, eight among the twenty seven transformants were found to lose the ability to express CBH1, indicative of successful cbh1 disruption through genome editing. Large DNA fragments including the co-transformed plasmid, chromosomal genes, or a mixture of these nucleotides, were inserted in the disrupted cbh1 locus. CONCLUSIONS:Direct transformation of Cas9/gRNA complex into the cell is a fast means to disrupt a gene in T. reesei and may find wide applications in strain improvement and functional genomics study.
Project description:MotivationBacteriophages (aka phages), which mainly infect bacteria, play key roles in the biology of microbes. As the most abundant biological entities on the planet, the number of discovered phages is only the tip of the iceberg. Recently, many new phages have been revealed using high-throughput sequencing, particularly metagenomic sequencing. Compared to the fast accumulation of phage-like sequences, there is a serious lag in taxonomic classification of phages. High diversity, abundance and limited known phages pose great challenges for taxonomic analysis. In particular, alignment-based tools have difficulty in classifying fast accumulating contigs assembled from metagenomic data.ResultsIn this work, we present a novel semi-supervised learning model, named PhaGCN, to conduct taxonomic classification for phage contigs. In this learning model, we construct a knowledge graph by combining the DNA sequence features learned by convolutional neural network and protein sequence similarity gained from gene-sharing network. Then we apply graph convolutional network to utilize both the labeled and unlabeled samples in training to enhance the learning ability. We tested PhaGCN on both simulated and real sequencing data. The results clearly show that our method competes favorably against available phage classification tools.Availability and implementationThe source code of PhaGCN is available via: https://github.com/KennthShang/PhaGCN.
Project description:Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.
Project description:Graphene oxide, integrated with the filamentous bacteriophage M13, forms a 3D large-scale multifunctional porous structure by self-assembly, with considerable potential for applications. We performed Raman spectroscopy under pressure on this porous composite to understand its fundamental mechanics. The results show that at low applied pressure, the [Formula: see text] bonds of graphene oxide stiffen very little with increasing pressure, suggesting a complicated behaviour of water intercalated between the graphene layers. The key message of this paper is that water in a confined space can have a significant impact on the nanostructure that hosts it. We introduced carbon nanotubes during the self-assembly of graphene oxide and M13, and a similar porous macro-structure was observed. However, in the presence of carbon nanotubes, pressure is transmitted to the [Formula: see text] bonds of graphene oxide straightforwardly as in graphite. The electrical conductivity of the composite containing carbon nanotubes is improved by about 30 times at a bias voltage of 10 V. This observation suggests that the porous structure has potential in applications where good electrical conductivity is desired, such as sensors and batteries.
Project description:The Bacillus subtilis Spx protein is a global transcription factor that interacts with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) and regulates transcription of genes involved in thiol-oxidative stress, sporulation, competence, and organosulfur metabolism. Here we determined the X-ray crystal structure of the Spx/alphaCTD complex from an entirely new crystal form than previously reported [Newberry, K.J., Nakano, S., Zuber, P., Brennan, R.G., 2005. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc. Natl. Acad. Sci. USA 102, 15839-15844]. Comparison of the previously reported sulfate-bound complex and our sulfate-free complex reveals subtle conformational changes that may be important for the role of Spx in regulating organosulfur metabolism.
Project description:Bacteriophage ΦKZ (PhiKZ) is the archetype of a family of massive bacterial viruses. It is considered to have therapeutic potential as its host, Pseudomonas aeruginosa, is an opportunistic, intrinsically antibiotic resistant, pathogen that kills tens of thousands worldwide each year. ΦKZ is an incredibly interesting virus, expressing many systems that the host already possesses. On infection, it forms a 'nucleus', erecting a barrier around its genome to exclude host endonucleases and CRISPR-Cas systems. ΦKZ infection is independent of the host transcriptional apparatus. It expresses two different multi-subunit RNA polymerases (RNAPs): the virion RNAP (vRNAP) is injected with the viral DNA during infection to transcribe early genes, including those encoding the non-virion RNAP (nvRNAP), which transcribes all further genes. ΦKZ nvRNAP is formed by four polypeptides thought to represent homologues of the eubacterial β/β' subunits, and a fifth with unclear homology, but essential for transcription. We have resolved the structure of ΦKZ nvRNAP to better than 3.0 Å, shedding light on its assembly, homology, and the biological role of the fifth subunit: it is an embedded, integral member of the complex, the position, structural homology and biochemical role of which imply that it has evolved from an ancestral homologue to σ-factor.