Project description:Correlative cryo-FLM-FIB milling is a powerful sample preparation technique for in situ cryo-ET. However, correlative workflows that incorporate precise targeting remain challenging. Here, we demonstrate the development and use of an integrated Fluorescence Light Microscope (iFLM) module within a cryo-FIB-SEM to enable a coordinate-based two-point 3D correlative workflow. The iFLM guided targeting of regions of interest coupled with an automated milling process of the cryo-FIB-SEM instrument allows for the efficient preparation of 9-12 ∼200 nm thick lamellae within 24 hours. Using regular and montage-cryo-ET data collection schemes, we acquired data from FIB-milled lamellae of HeLa cells to examine cellular ultrastructure. Overall, this workflow facilitates on-the-fly targeting and automated FIB-milling of cryo-preserved cells, bacteria, and possibly high pressure frozen tissue, to produce lamellae for downstream cryo-ET data collection.
Project description:Imaging large fields of view while preserving high-resolution structural information remains a challenge in low-dose cryo-electron tomography. Here we present robust tools for montage parallel array cryo-tomography (MPACT) tailored for vitrified specimens. The combination of correlative cryo-fluorescence microscopy, focused-ion-beam milling, substrate micropatterning, and MPACT supports studies that contextually define the three-dimensional architecture of cells. To further extend the flexibility of MPACT, tilt series may be processed in their entirety or as individual tiles suitable for sub-tomogram averaging, enabling efficient data processing and analysis.
Project description:Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Project description:Micro-electron diffraction (MicroED) is an emerging technique to use cryo-electron microscope to study the crystal structures of macromolecule from its micro-/nano-crystals, which are not suitable for conventional X-ray crystallography. However, this technique has been prevented for its wide application by the limited availability of producing good micro-/nano-crystals and the inappropriate transfer of crystals. Here, we developed a complete workflow to prepare suitable crystals efficiently for MicroED experiment. This workflow includes in situ on-grid crystallization, single-side blotting, cryo-focus ion beam (cryo-FIB) fabrication, and cryo-electron diffraction of crystal cryo-lamella. This workflow enables us to apply MicroED to study many small macromolecular crystals with the size of 2-10 μm, which is too large for MicroED but quite small for conventional X-ray crystallography. We have applied this method to solve 2.5 Å crystal structure of lysozyme from its micro-crystal within the size of 10 × 10 × 10 μm3. Our work will greatly expand the availability space of crystals suitable for MicroED and fill up the gap between MicroED and X-ray crystallography.
Project description:Imaging of cells and tissues has improved significantly over the last decade. Dual-beam instruments with a focused ion beam mounted on a scanning electron microscope (FIB-SEM), offering high-resolution 3D imaging of large volumes and fields-of-view are becoming widely used in the life sciences. FIB-SEM has most recently been implemented on fully hydrated, cryo-immobilized, biological samples. Correlative light and electron microscopy workflows combining fluorescence microscopy (FM) with FIB-SEM imaging exist, whereas workflows combining cryo-FM and cryo-FIB-SEM imaging are not yet commonly available. Here, we demonstrate that fluorescently labeled lipid droplets can serve as in situ fiducial markers for correlating cryo-FM and FIB-SEM datasets and that this approach can be used to target the acquisition of large FIB-SEM stacks spanning tens of microns under cryogenic conditions. We also show that cryo-FIB-SEM imaging is particularly informative for questions related to organelle structure and inter-organellar contacts, nuclear organization, and mineral deposits in cells.
Project description:Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium.
Project description:Cryo-electron tomography (cryo-ET) is a well-established technique for studying 3D structural details of subcellular macromolecular complexes and organelles in their nearly native context in the cell. A primary limitation of the application of cryo-ET is the accessible specimen thickness, which is less than the diameters of almost all eukaryotic cells. It has been shown that focused ion beam (FIB) milling can be used to prepare thin, distortion-free lamellae of frozen biological material for high-resolution cryo-ET. Commercial cryosystems are available for cryo-FIB specimen preparation, however re-engineering and additional fixtures are often essential for reliable results with a particular cryo-FIB and cryo-transmission electron microscope (cryo-TEM). Here, we describe our optimized protocol and modified instrumentation for cryo-FIB milling to produce thin lamellae and subsequent damage-free cryotransfer of the lamellae into our cartridge-type cryo-TEM.
Project description:Lamella micromachining by focused ion beam milling at cryogenic temperature (cryo-FIB) has matured into a preparation method widely used for cellular cryo-electron tomography. Due to the limited ablation rates of low Ga+ ion beam currents required to maintain the structural integrity of vitreous specimens, common preparation protocols are time-consuming and labor intensive. The improved stability of new-generation cryo-FIB instruments now enables automated operations. Here, we present an open-source software tool, SerialFIB, for creating automated and customizable cryo-FIB preparation protocols. The software encompasses a graphical user interface for easy execution of routine lamellae preparations, a scripting module compatible with available Python packages, and interfaces with three-dimensional correlative light and electron microscopy (CLEM) tools. SerialFIB enables the streamlining of advanced cryo-FIB protocols such as multi-modal imaging, CLEM-guided lamella preparation and in situ lamella lift-out procedures. Our software therefore provides a foundation for further development of advanced cryogenic imaging and sample preparation protocols.
Project description:Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.
Project description:Metabotropic GABAB receptor is a G protein-coupled receptor (GPCR) that mediates slow and prolonged inhibitory neurotransmission in the brain. It functions as a constitutive heterodimer composed of the GABAB1 and GABAB2 subunits. Each subunit contains three domains; the extracellular Venus flytrap module, seven-helix transmembrane region and cytoplasmic tail. In recent years, the three-dimensional structures of GABAB receptor extracellular and intracellular domains have been elucidated. These structures reveal the molecular basis of ligand recognition, receptor heterodimerization and receptor activation. Here we provide a brief review of the GABAB receptor structures, with an emphasis on describing the different ligand-bound states of the receptor. We will also compare these with the known structures of related GPCRs to shed light on the molecular mechanisms of activation and regulation in the GABAB system, as well as GPCR dimers in general. This article is part of the "Special Issue Dedicated to Norman G. Bowery".