Project description:There is an unmet need for a high-resolution three-dimensional (3D) technique to simultaneously image osteocytes and the matrix in which these cells reside. In serial block-face scanning electron microscopy (SBF SEM), an ultramicrotome mounted within the vacuum chamber of a microscope repeatedly sections a resin-embedded block of tissue. Backscattered electron scans of the block face provide a stack of high-resolution two-dimensional images, which can be used to visualise and quantify cells and organelles in 3D. High-resolution 3D images of biological tissues from SBF SEM have been exploited considerably to date in the neuroscience field. However, non-brain samples, in particular hard biological tissues, have appeared more challenging to image by SBF SEM due to the difficulties of sectioning and rendering the samples conductive. We have developed and propose protocols for bone tissue preparation using SBF SEM, for imaging simultaneously soft and hard bone tissue components in 3D. We review the state of the art in high-resolution imaging of osteocytes, provide a historical perspective of SBF SEM, and we present first SBF SEM proof-of-concept studies for murine and human tissue. The application of SBF SEM to hard tissues will facilitate qualitative and quantitative 3D studies of tissue microstructure and ultrastructure in bone development, ageing and pathologies such as osteoporosis and osteoarthritis.
Project description:Here, we provide the dataset associated with the research article "Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells" [1]. Based on several tools (SEM, EBSD, laser confocal microscopy and FE-SEM) we present original data relative to the microstructure and texture of aragonite crystallites in all Glycymeris shell layers (crossed-lamellar, complex crossed-lamellar, fibrous prismatic and pedal retractor and adductor myostraca) and address texture characteristics at the transition from one layer to the other, identifying similarities and differences among the different layers. Shells were cut transversely, obliquely and longitudinally in order to obtain different orientated sections of the outer and inner layer and of the myostraca. The identification of major microstructural elements was provided by detailed SEM and laser confocal microscopy images. Microstructure and texture characterization was based on EBSD measurements presented as band contrast images and as color-coded crystal orientation maps with corresponding pole figures. Crystal co-orientation was measured with the MUD value. Finally, the distribution of the organic matrix occluded within the outer crossed-lamellar layer was revealed using FE-SEM. These data, besides providing a modern unaltered Glycymeris reference to detect diagenetic alteration in fossil analogs used for paleoenvironmental reconstructions, are useful to better comprehend the mechanisms of bivalve shell formation.
Project description:Recent advances in volume electron microscopy (vEM) allow unprecedented visualization of the electron-dense structures of cells, tissues and model organisms at nanometric resolution in three dimensions (3D). Light-based microscopy has been widely used for specific localization of proteins; however, it is restricted by the diffraction limit of light, and lacks the ability to identify underlying structures. Here, we describe a protocol for ultrastructural detection, in three dimensions, of a protein (Connexin 43) expressed in the intercalated disc region of adult murine heart. Our protocol does not rest on the expression of genetically encoded proteins and it overcomes hurdles related to pre-embedding and immunolabeling, such as the penetration of the label and the preservation of the tissue. The pre-embedding volumetric immuno-electron microscopy (pre-embedding vIEM) protocol presented here combines several practical strategies to balance sample fixation with antigen and ultrastructural preservation, and penetration of labeling with blocking of non-specific antigen binding sites. The small 1.4 nm gold along with surrounded silver used as a detection marker buried in the sample also serves as a functional conductive resin that significantly reduces the charging of samples. Our protocol also presents strategies for facilitating the successful cutting of the samples during serial block-face scanning electron microscopy (SBF-SEM) imaging. Our results suggest that the small gold-based pre-embedding vIEM is an ideal labeling method for molecular localization throughout the depth of the sample at subcellular compartments and membrane microdomains.
Project description:Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies.