Project description:BackgroundNowadays, short dental implants are being increasingly applied in extremely resorbed posterior regions. The recent studies have indicated that short implants present a similar success rate to conventional implants. It is assumed that short implants can avoid additional surgical morbidity and are less technically demanding. However, high-quality evidence (≥ Ib: evidence from at least one randomized controlled trial) on comparing the clinical outcome of short implants and longer implants combined with osteotome sinus floor elevation (OSFE) technique is limited.Methods/designThe proposed study is designed as a prospective single-center, three-arm parallel group, randomized controlled trial. We plan to enroll 150 patients in need of dental implant treatment in the posterior maxilla. The inclusion criteria include: age ≧ 18 years, partial edentulism in the posterior maxilla for at least 3 months from tooth loss, residual bone height ranging from 6 to 8 mm, sufficient bone width (≥ 6 mm) in the edentulous region. The patients will be divided into three groups according to a table of random numbers: group 1: short implants (6 mm) alone; group 2: short implants (8 mm) combined with osteotome sinus floor elevation (OSFE); group 3: standard implants (10 mm) combined with OSFE. The assignment will be concealed from the clinical operators until the beginning of implant surgery. The outcome examiners and patients will be kept blinded to the assignment. Implant survival rates, implant success rates, complications, resonance frequency analysis (RFA) measurements, marginal bone level, treatment time and patient-reported outcome (visual analogue scale for intraoperative discomfort and postoperative pain) will be recorded. Clinical re-evaluations will be performed at 12, 24, 36 and 60 months after crown placement.DiscussionThe results of the trial will support better decision-making for dental implant treatment in atrophic maxillary ridges. If favorable, the use of short implants may avoid adjunct procedures used for implant insertion, thus reducing operative time, complexity and postoperative discomfort.Trial registrationClinicaltrials.gov identifier: NCT02350075 (registered on 17 February 2015).
Project description:Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.