Project description:Cryo-electron microscopy (cryo-EM), through resolution advancements, has become pivotal in structure-based drug discovery. However, most cryo-EM structures are solved at 3-4 Å resolution, posing challenges for small-molecule docking and structure-based virtual screening due to issues in the precise positioning of ligands and the surrounding side chains. We present ChemEM, a software package that employs cryo-EM data for the accurate docking of one or multiple ligands in a protein-binding site. Validated against a highly curated benchmark of high- and medium-resolution cryo-EM structures and the corresponding high-resolution controls, ChemEM displayed impressive performance, accurately placing ligands in all but one case, often surpassing cryo-EM PDB-deposited solutions. Even without including the cryo-EM density, the ChemEM scoring function outperformed the well-established AutoDock Vina score. Using ChemEM, we illustrate that valuable information can be extracted from maps at medium resolution and underline the utility of cryo-EM structures for drug discovery.
Project description:We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Project description:Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Project description:Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination.
Project description:Electron cryo-microscopy (cryo-EM) is a powerful technique for the structural characterization of biological macromolecules, enabling high-resolution analysis of targets once inaccessible to structural interrogation. In recent years, pharmaceutical companies have begun to utilize cryo-EM for structure-based drug design. Structural analysis of integral membrane proteins, which comprise a large proportion of druggable targets and pose particular challenges for X-ray crystallography, by cryo-EM has enabled insights into important drug target families such as G protein-coupled receptors (GPCRs), ion channels, and solute carrier (SLCs) proteins. Structural characterization of biologics, such as vaccines, viral vectors, and gene therapy agents, has also become significantly more tractable. As a result, cryo-EM has begun to make major impacts in bringing critical therapeutics to market. In this review, we discuss recent instructive examples of impacts from cryo-EM in therapeutics design, focusing largely on its implementation at Pfizer. We also discuss the opportunities afforded by emerging technological advances in cryo-EM, and the prospects for future development of the technique.
Project description:The mammalian mitochondrial ribosomes (mitoribosomes) are responsible for synthesizing 13 membrane proteins that form essential components of the complexes involved in oxidative phosphorylation or ATP generation for the eukaryotic cell. The mammalian 55S mitoribosome contains significantly smaller rRNAs and a large mass of mitochondrial ribosomal proteins (MRPs), including large mito-specific amino acid extensions and insertions in MRPs that are homologous to bacterial ribosomal proteins and an additional 35 mito-specific MRPs. Here we present the cryo-EM structure analysis of the small (28S) subunit (SSU) of the 55S mitoribosome. We find that the mito-specific extensions in homologous MRPs generally are involved in inter-MRP contacts and in contacts with mito-specific MRPs, suggesting a stepwise evolution of the current architecture of the mitoribosome. Although most of the mito-specific MRPs and extensions of homologous MRPs are situated on the peripheral regions, they also contribute significantly to the formation of linings of the mRNA and tRNA paths, suggesting a tailor-made structural organization of the mito-SSU for the recruitment of mito-specific mRNAs, most of which do not possess a 5' leader sequence. In addition, docking of previously published coordinates of the large (39S) subunit (LSU) into the cryo-EM map of the 55S mitoribosome reveals that mito-specific MRPs of both the SSU and LSU are involved directly in the formation of six of the 15 intersubunit bridges.
Project description:Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels.
Project description:DNA polymerase theta (Polθ) is a DNA helicase-polymerase protein that facilitates DNA repair and is synthetic lethal with homology-directed repair (HDR) factors. Thus, Polθ is a promising precision oncology drug-target in HDR-deficient cancers. Here, we characterize the binding and mechanism of action of a Polθ helicase (Polθ-hel) small-molecule inhibitor (AB25583) using cryo-EM. AB25583 exhibits 6 nM IC50 against Polθ-hel, selectively kills BRCA1/2-deficient cells, and acts synergistically with olaparib in cancer cells harboring pathogenic BRCA1/2 mutations. Cryo-EM uncovers predominantly dimeric Polθ-hel:AB25583 complex structures at 3.0-3.2 Å. The structures reveal a binding-pocket deep inside the helicase central-channel, which underscores the high specificity and potency of AB25583. The cryo-EM structures in conjunction with biochemical data indicate that AB25583 inhibits the ATPase activity of Polθ-hel helicase via an allosteric mechanism. These detailed structural data and insights about AB25583 inhibition pave the way for accelerating drug development targeting Polθ-hel in HDR-deficient cancers.