Project description:Objective'Omics analysis of large datasets has an increasingly important role in perinatal research, but understanding gene expression analyses in the fetal context remains a challenge. We compared the interpretation provided by a widely used systems biology resource (ingenuity pathway analysis [IPA]) with that from gene set enrichment analysis (GSEA) with functional annotation curated specifically for the fetus (Developmental FunctionaL Annotation at Tufts [DFLAT]).Study designUsing amniotic fluid supernatant transcriptome datasets previously produced by our group, we analyzed 3 different developmental perturbations: aneuploidy (Trisomy 21 [T21]), hemodynamic (twin-twin transfusion syndrome [TTTS]), and metabolic (maternal obesity) vs sex- and gestational age-matched control subjects. Differentially expressed probe sets were identified with the use of paired t-tests with the Benjamini-Hochberg correction for multiple testing (P < .05). Functional analyses were performed with IPA and GSEA/DFLAT. Outputs were compared for biologic relevance to the fetus.ResultsCompared with control subjects, there were 414 significantly dysregulated probe sets in T21 fetuses, 2226 in TTTS recipient twins, and 470 in fetuses of obese women. Each analytic output was unique but complementary. For T21, both IPA and GSEA/DFLAT identified dysregulation of brain, cardiovascular, and integumentary system development. For TTTS, both analytic tools identified dysregulation of cell growth/proliferation, immune and inflammatory signaling, brain, and cardiovascular development. For maternal obesity, both tools identified dysregulation of immune and inflammatory signaling, brain and musculoskeletal development, and cell death. GSEA/DFLAT identified substantially more dysregulated biologic functions in fetuses of obese women (1203 vs 151). For all 3 datasets, GSEA/DFLAT provided more comprehensive information about brain development. IPA consistently provided more detailed annotation about cell death. IPA produced many dysregulated terms that pertained to cancer (14 in T21, 109 in TTTS, 26 in maternal obesity); GSEA/DFLAT did not.ConclusionInterpretation of the fetal amniotic fluid supernatant transcriptome depends on the analytic program, which suggests that >1 resource should be used. Within IPA, physiologic cellular proliferation in the fetus produced many "false positive" annotations that pertained to cancer, which reflects its bias toward adult diseases. This study supports the use of gene annotation resources with a developmental focus, such as DFLAT, for 'omics studies in perinatal medicine.
Project description:Therapeutic outcome for the treatment of glioma was often limited due to the non-targeted nature of drugs and the physiological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). An ideal glioma-targeted delivery system must be sufficiently potent to cross the BBB and BBTB and then target glioma cells with adequate optimized physiochemical properties and biocompatibility. However, it is an enormous challenge to the researchers to engineer the above-mentioned features into a single nanocarrier particle. New frontiers in nanomedicine are advancing the research of new biomaterials. In this study, we demonstrate a strategy for glioma targeting by encapsulating vincristine sulfate (VCR) into a naturally available apoferritin nanocage-based drug delivery system with the modification of GKRK peptide ligand (GKRK-APO). Apoferritin (APO), an endogenous nanosize spherical protein, can specifically bind to brain endothelial cells and glioma cells via interacting with the transferrin receptor 1 (TfR1). GKRK is a peptide ligand of heparan sulfate proteoglycan (HSPG) over-expressed on angiogenesis and glioma, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect of GKRK peptide and parent APO, GKRK-APO displayed higher glioma localization than that of parent APO. After loading with VCR, GKRK-APO showed the most favorable antiglioma effect in vitro and in vivo. These results demonstrated that GKRK-APO is an important potential drug delivery system for glioma-targeted therapy.
Project description:The 3DEM map challenge provided an opportunity to test different algorithms and workflows for processing single particle cryo-EM data. We were interested in testing whether we could use the standard Appion workflow with minimal manual intervention to achieve similar or better resolution than other challengers. Another question we were interested in testing was what the influence of particle sorting and elimination would be on the resolution and quality of 3D reconstructions. Since apoferritin is historically a challenging particle for single particle reconstruction and the authors of the original map challenge data used only a fraction of the particles present in the dataset, we focused on the apoferritin dataset for our entry. We submitted a 3.7 Å map from 25,844 particles and a 3.6 Å map from 53,334 particles and after assessment were among the best of the apoferritin maps that were submitted. Here we present the details of our reconstruction strategy and compare our strategy to that of another high-scoring apoferritin map. Altogether, our results suggest that for a relatively conformationally homogeneous particle like apoferritin, including as many particles as possible after elimination of junk leads to the highest resolution, and the choice of parameters for custom mask creation can lead to subtle but significant changes in the resolution of 3D reconstructions.
Project description:Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.
Project description:We present the optimization of experimental conditions to yield long, rigid apoferritin protein amyloid fibrils, as well as the corresponding fibrillation pathway. Fibril growth kinetics was followed using atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), circular dichroism (CD), fourier-transform infrared spectroscopy (FTIR), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Among the morphologies identified, we show that the conditions result in small aggregates, as well as medium and long fibrils. Extended incubation times led to progressive unfolding and hydrolysis of the proteins into very short peptide fragments. AFM, SDS-PAGE, and CD support a universal common fibrillation mechanism in which hydrolyzed fragments play the central role. These collective results provide convincing evidence that protein unfolding and complete hydrolysis of the proteins into very short peptide sequences are essential for the formation of the final apoferritin amyloid-like fibrils.