Project description:Electron ptychography has seen a recent surge of interest for phase sensitive imaging at atomic or near-atomic resolution. However, applications are so far mainly limited to radiation-hard samples, because the required doses are too high for imaging biological samples at high resolution. We propose the use of non-convex Bayesian optimization to overcome this problem, and show via numerical simulations that the dose required for successful reconstruction can be reduced by two orders of magnitude compared to previous experiments. As an important application we suggest to use this method for imaging single biological macromolecules at cryogenic temperatures and demonstrate 2D single-particle reconstructions from simulated data with a resolution up to 5.4?Å at a dose of 20e - /Å2. When averaging over only 30 low-dose datasets, a 2D resolution around 3.5?Å is possible for macromolecular complexes even below 100 kDa. With its independence from the microscope transfer function, direct recovery of phase contrast, and better scaling of signal-to-noise ratio, low-dose cryo electron ptychography may become a promising alternative to Zernike phase-contrast microscopy.
Project description:Cryo-electron microscopy is an essential tool for high-resolution structural studies of biological systems. This method relies on the use of phase contrast imaging at high defocus to improve information transfer at low spatial frequencies at the expense of higher spatial frequencies. Here we demonstrate that electron ptychography can recover the phase of the specimen with continuous information transfer across a wide range of the spatial frequency spectrum, with improved transfer at lower spatial frequencies, and as such is more efficient for phase recovery than conventional phase contrast imaging. We further show that the method can be used to study frozen-hydrated specimens of rotavirus double-layered particles and HIV-1 virus-like particles under low-dose conditions (5.7 e/Å2) and heterogeneous objects in an Adenovirus-infected cell over large fields of view (1.14 × 1.14 μm), thus making it suitable for studies of many biologically important structures.
Project description:Electron ptychography has recently attracted considerable interest for high resolution phase-sensitive imaging. However, to date studies have been mainly limited to radiation resistant samples as the electron dose required to record a ptychographic dataset is too high for use with beam-sensitive materials. Here we report defocused electron ptychography using a fast, direct-counting detector to reconstruct the transmission function, which is in turn related to the electrostatic potential of a two-dimensional material at atomic resolution under various low dose conditions.
Project description:Bacteriophage phi 12 is a member of the Cystoviridae virus family and contains a genome consisting of three segments of double-stranded RNA (dsRNA). This virus family contains eight identified members, of which four have been classified in regard to their complete genomic sequence and encoded viral proteins. A phospholipid envelope that contains the integral proteins P6, P9, P10, and P13 surrounds the viral particles. In species phi 6, host infection requires binding of a multimeric P3 complex to type IV pili. In species varphi8, phi 12, and phi 13, the attachment apparatus is a heteromeric protein assembly that utilizes the rough lipopolysaccharide (rlps) as a receptor. In phi 8 the protein components are designated P3a and P3b while in species phi 12 proteins P3a and P3c have been identified in the complex. The phospholipid envelope of the cystoviruses surrounds a nucleocapsid (NC) composed of two shells. The outer shell is composed of protein P8 with a T=13 icosahedral lattice while the primary component of the inner shell is a dodecahedral frame composed of dimeric protein P1. For the current study, the 3D architecture of the intact phi 12 virus was obtained by electron cryo-tomography. The nucleocapsid appears to be centered within the membrane envelope and possibly attached to it by bridging structures. Two types of densities were observed protruding from the membrane envelope. The densities of the first type were elongated, running parallel, and closely associated to the envelope outer surface. In contrast, the second density was positioned about 12 nm above the envelope connected to it by a flexible low-density stem. This second structure formed a torroidal structure termed "the donut" and appears to inhibit BHT-induced viral envelope fusion.
Project description:Correlative light and electron cryo-microscopy (cryo-CLEM) combines information from the specific labeling of fluorescence cryo-microscopy (cryo-FM) with the high resolution in environmental context of electron cryo-microscopy (cryo-EM). Exploiting super-resolution methods for cryo-FM is advantageous, as it enables the identification of rare events within the environmental background of cryo-EM at a sensitivity and resolution beyond that of conventional methods. However, due to the need for relatively high laser intensities, current super-resolution cryo-CLEM methods require cryo-protectants or support films which can severely reduce image quality in cryo-EM and are not compatible with many samples, such as mammalian cells. Here, we introduce cryogenic super-resolution optical fluctuation imaging (cryo-SOFI), a low-dose super-resolution imaging scheme based on the SOFI principle. As cryo-SOFI does not require special sample preparation, it is fully compatible with conventional cryo-EM specimens, and importantly, it does not affect the quality of cryo-EM imaging. By applying cryo-SOFI to a variety of biological application examples, we demonstrate resolutions up to ∼135 nm, an improvement of up to three times compared with conventional cryo-FM, while maintaining the specimen in a vitrified state for subsequent cryo-EM. Cryo-SOFI presents a general solution to the problem of specimen devitrification in super-resolution cryo-CLEM. It does not require a complex optical setup and can easily be implemented in any existing cryo-FM system.
Project description:Both high resolution and high precision are required to quantitatively determine the atomic structure of complex nanostructured materials. However, for conventional imaging methods in scanning transmission electron microscopy (STEM), atomic resolution with picometer precision cannot usually be achieved for weakly-scattering samples or radiation-sensitive materials, such as 2D materials. Here, we demonstrate low-dose, sub-angstrom resolution imaging with picometer precision using mixed-state electron ptychography. We show that correctly accounting for the partial coherence of the electron beam is a prerequisite for high-quality structural reconstructions due to the intrinsic partial coherence of the electron beam. The mixed-state reconstruction gains importance especially when simultaneously pursuing high resolution, high precision and large field-of-view imaging. Compared with conventional atomic-resolution STEM imaging techniques, the mixed-state ptychographic approach simultaneously provides a four-times-faster acquisition, with double the information limit at the same dose, or up to a fifty-fold reduction in dose at the same resolution.
Project description:The filamentous bacteriophage IKe infects Escherichia coli cells bearing IncN pili. We report the cryo-electron microscopy structure of the micrometer-long IKe viral particle at a resolution of 3.4 Å. The major coat protein [protein 8 (p8)] consists of 47 residues that fold into a ?68-Å-long helix. An atomic model of the coat protein was built. Five p8 helices in a horizontal layer form a pentamer, and symmetrically neighboring p8 layers form a right-handed helical cylinder having a rise per pentamer of 16.77 Å and a twist of 38.52°. The inner surface of the capsid cylinder is positively charged and has direct interactions with the encapsulated circular single-stranded DNA genome, which has an electron density consistent with an unusual left-handed helix structure. Similar to capsid structures of other filamentous viruses, strong capsid packing in the IKe particle is maintained by hydrophobic residues. Despite having a different length and large sequence differences from other filamentous phages, ?-? interactions were found between Tyr9 of one p8 and Trp29 of a neighboring p8 in IKe that are similar to interactions observed in phage M13, suggesting that, despite sequence divergence, overall structural features are maintained.
Project description:Studies of the structural and functional role of chromosomes in cytogenetics have spanned more than 10 decades. In this work, we take advantage of the coherent X-rays available at the latest synchrotron sources to extract the individual masses of all 46 chromosomes of metaphase human B and T cells using hard X-ray ptychography. We have produced 'X-ray karyotypes' of both heavy metal-stained and unstained spreads to determine the gain or loss of genetic material upon low-level X-ray irradiation doses due to radiation damage. The experiments were performed at the I-13 beamline, Diamond Light Source, Didcot, UK, using the phase-sensitive X-ray ptychography method.