Project description:p16 (CDKN2A) is a member of the INK4 class of cell cycle inhibitors, which is often dysregulated in cancer. However, the prevalence of p16 expression in different cancer types is controversial. 15,783 samples from 124 different tumor types and 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. p16 was detectable in 5,292 (45.0%) of 11,759 interpretable tumors. Except from adenohypophysis in islets of Langerhans, p16 staining was largely absent in normal tissues. In cancer, highest positivity rates were observed in uterine cervix squamous cell carcinomas (94.4%), non-invasive papillary urothelial carcinoma, pTaG2 (100%), Merkel cell carcinoma (97.7%), and small cell carcinomas of various sites of origin (54.5%-100%). All 124 tumor categories showed at least occasional p16 immunostaining. Comparison with clinico-pathological data in 128 vulvar, 149 endometrial, 295 serous ovarian, 396 pancreatic, 1365 colorectal, 284 gastric, and 1245 urinary bladder cancers, 910 breast carcinomas, 620 clear cell renal cell carcinomas, and 414 testicular germ cell tumors revealed only few statistically significant associations. Comparison of human papilloma virus (HPV) status and p16 in 497 squamous cell carcinomas of different organs revealed HPV in 80.4% of p16 positive and in 20.6% of p16 negative cancers (p<0.0001). It is concluded, that a positive and especially strong p16 immunostaining is a feature for malignancy which may be diagnostically useful in lipomatous, urothelial and possibly other tumors. The imperfect association between p16 immunostaining and HPV infection with high variability between different sites of origin challenges the use of p16 immunohistochemistry as a surrogate for HPV positivity, except in tumors of cervix uteri and the penis.
Project description:CD8+ T cells are pre-programmed for cytotoxic differentiation. However, a subset of effector CD8+ T cells (‘Tc17’) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok. We further show that STAT3 restrained cytotoxic gene expression in CD8+ T cells and that RORgt represses cytotoxic genes by inhibiting the functions but not the expression of the ‘cytotoxic’ transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions.
Project description:Population genomics and structure of several fig species and corresponding fig wasps along the Mount Wilhelm altitudinal gradient, Papua New Guinea. Raw sequence reads
Project description:A striking property of the ancient and obligate mutualism between figs and their pollinating wasps is that fig wasps consistently oviposit in the inner flowers of the fig syconium (gall flowers, which develop into galls that house developing larvae), but typically do not use the outer ring of flowers (seed flowers, which develop into seeds). To better understand differences between gall and seed flowers that might influence oviposition choices, and the unknown mechanisms underlying gall formation, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, which posits that only a portion of fig flowers are physiologically capable of responding to gall induction or supporting larval development, we found significant differences in gene expression assigned to defense and metabolism between gall- and seed flowers in receptive syconia. Transcripts assigned to flavonoids and defense were especially prevalent in receptive gall flowers, and carbohydrate metabolism was significantly up-regulated relative to seed flowers. In turn, high expression of the venom gene icarapin during wasp embryogenesis within galled flowers distinguishes it as a candidate gene for gall initiation. In response to galling, the fig significantly up-regulates the expression of chalcone synthase, which previously has been connected to gall formation in other plants. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides evidence for a stability mechanism in the ancient fig-fig wasp association.
Project description:A striking property of the ancient and obligate mutualism between figs and their pollinating wasps is that fig wasps consistently oviposit in the inner flowers of the fig syconium (gall flowers, which develop into galls that house developing larvae), but typically do not use the outer ring of flowers (seed flowers, which develop into seeds). To better understand differences between gall and seed flowers that might influence oviposition choices, and the unknown mechanisms underlying gall formation, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, which posits that only a portion of fig flowers are physiologically capable of responding to gall induction or supporting larval development, we found significant differences in gene expression assigned to defense and metabolism between gall- and seed flowers in receptive syconia. Transcripts assigned to flavonoids and defense were especially prevalent in receptive gall flowers, and carbohydrate metabolism was significantly up-regulated relative to seed flowers. In turn, high expression of the venom gene icarapin during wasp embryogenesis within galled flowers distinguishes it as a candidate gene for gall initiation. In response to galling, the fig significantly up-regulates the expression of chalcone synthase, which previously has been connected to gall formation in other plants. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides evidence for a stability mechanism in the ancient fig-fig wasp association. We examined two different Ficus flower types at two different time points. Each sample contained a pool of hundreds of individual flowers from multiple sycomia.
Project description:Mesenchymal stromal cells (MSCs) have been demonstrated to ameliorate allergic contact dermatitis (ACD), a typical T-cell-mediated disorder. However, the underlying mechanisms behind the MSC-based treatment for ACD have not yet been fully elucidated. The stanniocalcins (STCs) comprise a family of secreted glycoprotein hormones that act as important anti-inflammatory proteins. Here, we investigated the roles of STCs in MSC-mediated T-cell suppression and their potential role in the MSC-based treatment for ACD. Gene expression profiling revealed that STC2, but not STC1, was highly expressed in MSCs. STC2 knockdown in MSCs significantly impaired their effects in reducing TNF-α- and IFN-γ-producing CD8+ T cells. Importantly, silencing the STC2 expression in MSCs abated their therapeutic effect on contact hypersensitivity (CHS) in mice, mainly restoring the generation and infiltration of IFN-γ-producing CD8+ T cells (Tc1 cells). Mechanistically, STC2 co-localized with heme oxygenase 1 (HO-1) in MSCs, and contributed to MSC-mediated reduction of CD8+ Tc1 cells via regulating HO-1 activity. Together, these findings newly identify STC2 as the first stanniocalcin responsible for mediating the immunomodulatory effects of MSCs on allogeneic T cells and STC2 contribute to MSC-based treatment for ACD mainly via reducing the CD8+ Tc1 cells.
Project description:CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.
Project description:Lymph node culture-positive tuberculosis (LNTB+) is associated with increased mycobacterial antigen-induced pro-inflammatory cytokine production compared to LN culture-negative tuberculosis (LNTB-). However, the frequencies of CD4+, CD8+ T cells and NK cells expressing Th1/Tc1/Type 1 (IFNγ, TNFα, IL-2), Th17/Tc17/Type 17 (IL-17A, IL-17F, IL-22) cytokines and cytotoxic (perforin [PFN], granzyme [GZE] B, CD107a) markers in LNTB+ and LNTB- individuals are not known. Thus, we have studied the unstimulated (UNS) and mycobacterial antigen-induced frequencies of CD4+, CD8+ T and NK cells expressing Th1, Th17 cytokines and cytotoxic markers using flow cytometry. The frequencies of CD4+, CD8+ T and NK cells expressing cytokines and cytotoxic markers were not significantly different between LNTB+ and LNTB- individuals in UNS condition. In contrast, upon Mtb antigen stimulation, LNTB+ individuals are associated with significantly increased frequencies of CD4+ T cells (PPD [IFNγ, TNFα], ESAT-6 PP [IFNγ, TNFα], CFP-10 PP [IFNγ, TNFα, IL-2]), CD8+ T cells (PPD [IFNγ], ESAT-6 PP [IFNγ], CFP-10 PP [TNFα]) and NK cells (PPD [IFNγ, TNFα], ESAT-6 PP [IFNγ, TNFα], CFP-10 PP [TNFα]) expressing Th1/Tc1/Type 1, but not Th17/Tc17/Type 17 cytokines and cytotoxic markers compared to LNTB- individuals. LNTB+ individuals did not show any significant alterations in the frequencies of CD4+, CD8+ T cells and NK cells expressing cytokines and cytotoxic markers compared to LNTB- individuals upon HIV Gag PP and P/I antigen stimulation. Increased frequencies of CD4+, CD8+ T and NK cells expressing Th1/Tc1/Type 1 cytokines among the LNTB+ group indicates that the presence of mycobacteria plays a dominant role in the activation of key correlates of immune protection or induces higher immunopathology.