Project description:The taxonomic relationship of Lentzea atacamensis and Lentzea deserti were re-evaluated using comparative genome analysis. The 16S rRNA gene sequence analysis indicated that the type strains of L. atacamensis and L. deserti shared 99.7% sequence similarity. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the genomes of two type strains were 88.6% and 98.8%, respectively, greater than the two recognized thresholds values of 70% dDDH and 95-96% ANI for bacterial species delineation. These results suggested that L. atacamensis and L. deserti should share the same taxonomic position. And this conclusion was further supported by similar phenotypic and chemotaxonomic features between them. Therefore, we propose that L. deserti is a later heterotypic synonym of L. atacamensis.
Project description:Anhydrobiosis is considered to be an adaptation of important applicative implications because it enables resistance to the lack of water. The phenomenon is still not well understood at molecular level. Thus, a good model invertebrate species for the research is required. The best known anhydrobiotic invertebrates are tardigrades (Tardigrada), considered to be toughest animals in the world. Hypsibius. exemplaris is one of the best studied tardigrade species, with its name "exemplaris" referring to the widespread use of the species as a laboratory model for various types of research. However, available data suggest that anhydrobiotic capability of the species may be overestimated. Therefore, we determined anhydrobiosis survival by Hys. exemplaris specimens using three different anhydrobiosis protocols. We also checked ultrastructure of storage cells within formed dormant structures (tuns) that has not been studied yet for Hys. exemplaris. These cells are known to support energetic requirements of anhydrobiosis. The obtained results indicate that Hys. exemplaris appears not to be a good model species for anhydrobiosis research.
Project description:In patients with primary breast cancer, neoadjuvant chemotherapy with doxorubicin plus pemetrexed followed by docetaxel (AP-D) is associated with a pathologic complete response (pCR) rate of 16.5%, and doxorubicin plus cyclophosphamide followed by docetaxel (AC-D) is associated with a pCR rate of 20.2%. Our primary objective was to identify single predictive genetic markers for achievement of pCR following either AP-D or AC-D treatment. Our main secondary objective was to detect treatment-group specific, pCR-predictive gene signatures.