Project description:Many animals, ranging from vinegar flies to humans, discriminate a wide range of tastants, including sugars, bitter compounds, NaCl, and sour. However, the taste of Ca2+ is poorly understood, and it is unclear whether animals such as Drosophila melanogaster are endowed with this sense. Here, we examined Ca2+ taste in Drosophila and showed that high levels of Ca2+ are aversive. The repulsion was mediated by two mechanisms-activation of a specific class of gustatory receptor neurons (GRNs), which suppresses feeding and inhibition of sugar-activated GRNs, which normally stimulates feeding. The distaste for Ca2+, and Ca2+-activated action potentials required several members of the variant ionotropic receptor (IR) family (IR25a, IR62a, and IR76b). Consistent with the Ca2+ rejection, we found that high concentrations of Ca2+ decreased survival. We conclude that gustatory detection of Ca2+ represents an additional sense of taste in Drosophila and is required for avoiding toxic levels of this mineral.
Project description:In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.
Project description:The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors.
Project description:Rhodopsin is a light receptor comprised of an opsin protein and a light-sensitive retinal chromophore. Despite more than a century of scrutiny, there is no evidence that opsins function in chemosensation. Here, we demonstrate that three Drosophila opsins, Rh1, Rh4, and Rh7, are needed in gustatory receptor neurons to sense a plant-derived bitter compound, aristolochic acid (ARI). The gustatory requirements for these opsins are light-independent and do not require retinal. The opsins enabled flies to detect lower concentrations of aristolochic acid by initiating an amplification cascade that includes a G-protein, phospholipase Cβ, and the TRP channel, TRPA1. In contrast, responses to higher levels of the bitter compound were mediated through direct activation of TRPA1. Our study reveals roles for opsins in chemosensation and raise questions concerning the original roles for these classical G-protein-coupled receptors.
Project description:Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.
Project description:To uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons. Experiment Overall Design: Proboscises of poxn70 homozygous mutant and poxn70 heterozygous mutant males (8-18 days post eclosure) were dissected, and total RNA was harvested in Trizol according to standard trizol protocol. Samples for each microarray were prepared from 164-280 proboscises. We performed 3 biological replicates for each genotype.
Project description:Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis.
Project description:Sugar-containing foods offered at cooler temperatures tend to be less appealing to many animals. However, the mechanism through which the gustatory system senses thermal input and integrates temperature and chemical signals to produce a given behavioral output is poorly understood. To study this fundamental problem, we used the fly, Drosophila melanogaster. We found that the palatability of sucrose is strongly reduced by modest cooling. Using Ca2+ imaging and electrophysiological recordings, we demonstrate that bitter gustatory receptor neurons (GRNs) and mechanosensory neurons (MSNs) are activated by slight cooling, although sugar neurons are insensitive to the same mild stimulus. We found that a rhodopsin, Rh6, is expressed and required in bitter GRNs for cool-induced suppression of sugar appeal. Our findings reveal that the palatability of sugary food is reduced by slightly cool temperatures through different sets of thermally activated neurons, one of which depends on a rhodopsin (Rh6) for cool sensation.
Project description:Ammonia is both a building block and a breakdown product of amino acids and is found widely in the environment. The odor of ammonia is attractive to many insects, including insect vectors of disease. The olfactory response of Drosophila to ammonia has been studied in some detail, but the taste response has received remarkably little attention. Here, we show that ammonia is a taste cue for Drosophila. Nearly all sensilla of the major taste organ of the Drosophila head house a neuron that responds to neutral solutions of ammonia. Ammonia is toxic at high levels to many organisms, and we find that it has a negative valence in two paradigms of taste behavior, one operating over hours and the other over seconds. Physiological and behavioral responses to ammonia depend at least in part on Gr66a+ bitter-sensing taste neurons, which activate a circuit that deters feeding. The Amt transporter, a critical component of olfactory responses to ammonia, is widely expressed in taste neurons but is not required for taste responses. This work establishes ammonia as an ecologically important taste cue in Drosophila, and shows that it can activate circuits that promote opposite behavioral outcomes via different sensory systems.
Project description:Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food.