Expression data from MCF-7 cells transfected with miR-26a and treated or not with estradiol
Ontology highlight
ABSTRACT: Altered expression of microRNAs (miRNAs), an abundant class of small non-protein-coding RNAs that mostly function as negative regulators of protein-coding gene expression, is common in cancer. Here we analyze the regulation of miRNA expression in response to estrogen, a steroid hormone that is involved in the development and progression of breast carcinomas and that is acting via the estrogen receptors (ER) transcription factors. We set out to thoroughly describe miRNA expression, by using miRNA microarrays and real time RTPCR experiments, in various breast tumor cell lines in which estrogen signaling has been induced by 17β-estradiol (E2). We show that the expression of a broad set of miRNAs decreases following E2 treatment in an ER-dependent manner. We further show that enforced expression of several of the repressed miRNAs reduces E2-dependent cell growth, thus linking expression of specific miRNAs with estrogen-dependent cellular response. In addition, a transcriptome analysis revealed that the E2-repressed miR-26a and miR-181a regulate many genes associated with cell growth and proliferation, including the progesterone receptor gene, a key actor in estrogen signaling. Strikingly, miRNA expression is also regulated in breast cancers of women who had received antiestrogen neoadjuvant therapy thereby showing an estrogen-dependent in vivo regulation of miRNA expression. Overall, our data indicates that the extensive alterations in miRNA regulation upon estrogen signalling pathway plays a key role in estrogen-dependent functions and highlights the utility of considering miRNA expression in the understanding of antiestrogen resistance of breast cancer. 9 samples analyzed. Triplicates were done. MCF-7+miR26a+E2 (n=1 to 3) ; MCF7+miRctrl+E2 (n=1 to 3) ; MCF7+miRctrl+vehicle (n=1 to 3). We generated pairwise comparisons using EASANA from GenoSplice technology: MCF-7+miR26a+E2 versus MCF7+miRctrl+E2 and MCF-7+miRctrl+E2 versus MCF7+miRctrl+vehicle. Fold change ≥1.5 were selected.
ORGANISM(S): Homo sapiens
SUBMITTER: Maillot G
PROVIDER: S-ECPF-GEOD-17460 | biostudies-other | 2009 Nov
REPOSITORIES: biostudies-other
ACCESS DATA