U87 cells implanted on a chick CAM (Chorioallantoic Membrane)
Ontology highlight
ABSTRACT: Glioblastoma multiforme (GBM) brain tumours have one of the shortest mean survival times (<1 year). In vivo models of GBM in mice and rats have been developed to study aspects of glioma that cannot be observed in cell culture such as angiogenesis, invasion and metastasis. Gliomas can be induced by implantation of rodent glioma cell lines into the brain or flank of nude mice. The disadvantages of rodent models however include variable growth rate and poor penetrance, which leads to difficulties in collecting clearly graded samples (pre-vascular/vascular). Bikfalvi et al have previously established a human GBM model that addresses these issues based on the chicken egg chorio-allantoic membrane (CAM), a highly vascularised extra-embryonic tissue. We have used DNA microarrays and a CAM model of GBM to study gene expression during the recruitment and development of the tumour vasculature. Over a 5 day period samples were taken every 12 hours from the tumour implantation site consisting of tumour cells and stroma cells, and also from a site distant from the implantation site consisting of just CAM cells. This study will shed light on the dynamic transcriptional signature of pathological angiogenesis. On day 10 of embryonic development 3-5 million U87 cells were deposited onto the surface of the CAM after gentle laceration. The cells were contained within a plastic ring and each tumour was size matched based on its volume. Tumour/stroma and distant CAM samples were cut out at 12 hour intervals post implantation for 5 days, equalling 10 time points. Each time point consisted of three replicates. U87 cells in culture (pre-implantation) were also included in the study in triplicate.
ORGANISM(S): Homo sapiens
SUBMITTER: Turan Nil
PROVIDER: S-ECPF-GEOD-43674 | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA