Oct4 affects E-cadherin expression via regulating Rnd1 associated cytoskeleton rearrangement in breast cancer cells
Ontology highlight
ABSTRACT: Oct4, a key transcription factor for maintaining the pluripotency and self-renewal of stem cells has been reported previously. It also plays an important role in tumor proliferation and apoptosis, but the role of Oct4 been in tumor metastasis is still not very clear. Here, we found that ectopic expression of Oct4 in breast cancer cells can inhibit their migration and invasion. Detailed examinations revealed that Oct4 up-regulates expression of E-cadherin, indicative of its inhibitory role in epithelial-mesenchymal transition (EMT). RNA-sequence assay showed that Oct4 down-regulates expression of Rnd1. As an atypical Rho protein, Rnd1 can affect cytoskeleton rearrangement and regulate cadherin-based cell-cell adhesion by antagonizing the typical Rho protein, RhoA. Ectopic expression of Rnd1 in MDA-MB-231 cells changes cell morphology which influences cell adhesion and increases migration. It is reported that EMT is accompanied by cytoskeleton remodeling, we hypothesized that Rnd1 may play a role in regulating EMT. Over-expression of Rnd1 can partly rescue the inhibitory effects induced by Oct4, not only migration and invasion, but also in E-cadherin level and cellular morphology. Furthermore, silencing of Rnd1 can up-regulate the expression of E-cadherin in MDA-MB-231 cells. These results present evidence that ectopic expression of Oct4 increases E-cadherin and inhibits metastasis, effects which may be related to Rnd1 associated cell-cell adhesion in breast cancer cells. Examination of mRNA profiles in MDA-MB-231 cells with OCT4 overexpressing
ORGANISM(S): Homo sapiens
SUBMITTER: Shen Long
PROVIDER: S-ECPF-GEOD-54392 | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA