Sarcoplasmic-reticulum biogenesis in contraction-inhibited skeletal-muscle cultures.
Ontology highlight
ABSTRACT: We have previously shown that inhibition of the spontaneous contractile activity of cultured embryonic-chick skeletal-muscle fibres with tetrodotoxin (TTX) leads to decreased sarcoplasmic-reticulum Ca(2+)-transport rates and steady-state concentrations of the high-energy Ca(2+)-ATPase phosphoenzyme intermediate [Charuk & Holland (1983) Exp. Cell Res. 144, 143-157]. In the present study we used a monoclonal antibody to the Ca(2+)-ATPase to show that there is a decreased amount of enzyme accumulated by contraction-inhibited myotubes. Indirect immunofluorescence microscopy using the monoclonal antibody to the Ca(2+)-ATPase also revealed a disordered subcellular organization of the sarcotubular system in contraction-inhibited myotubes. The biogenesis of sarcoplasmic-reticulum proteins in TTX-paralysed myofibres was studied by labelling cells with [35S]methionine before isolation of the active Ca(2+)-pump membrane fraction. Protein turnover was selectively increased in that fraction from TTX-treated muscle cultures. Electrophoretic analysis and quantitative fluorography confirmed that decreased accumulation of the Ca(2+)-ATPase enzyme in contraction-inhibited myotubes was associated with increased turnover of this protein. The present results demonstrate that biogenesis of the sarcoplasmic-reticulum Ca(2+)-ATPase is regulated by the contractile activity of skeletal-muscle fibres.
SUBMITTER: Charuk JH
PROVIDER: S-EPMC1130792 | biostudies-other | 1992 Mar
REPOSITORIES: biostudies-other
ACCESS DATA