The cytosolic concentration of phosphate determines the maximal rate of glycogenolysis in perfused rat liver.
Ontology highlight
ABSTRACT: Glycogenolysis was studied in glycogen-rich perfused livers in which glycogen phosphorylase was fully converted into the a form by exposure of the livers to dibutyryl cyclic AMP. We monitored intracellular Pi by 31P n.m.r. Perfusion with Pi-free medium during 30 min caused a progressive decrease of the Pi signal to 50% of its initial value. In contrast, exposure of the livers to KCN and/or 2,4-dinitrophenol resulted in a rapid doubling of the Pi signal. Alterations in the intracellular Pi coincided with proportional changes in the rate of hepatic glycogenolysis (measured as the output of glucose plus lactate). The results indicate that the rate of glycogenolysis catalysed by phosphorylase a depends linearly on the hepatic Pi concentration. Hence the Km of phosphorylase a for its substrate Pi must be considerably higher than the concentrations that occur in the cytosol, even during hypoxia.
SUBMITTER: Vanstapel F
PROVIDER: S-EPMC1131116 | biostudies-other | 1990 Feb
REPOSITORIES: biostudies-other
ACCESS DATA