Induction of lutropin receptors by lutropin and cyclic AMP in cultured mouse tumour (MA10) Leydig cells.
Ontology highlight
ABSTRACT: The role of cyclic AMP in the regulation of lutropin (luteinizing hormone, LH) receptors has been investigated in cultured mouse tumour (MA10) Leydig cells. The LH receptors were quantified by measuring the binding of 125I-labelled human chorionic gonadotropin (hCG). LH (0.03 nM) in the presence of 1 mM-dibutyryl-cyclic AMP [(Bu)2cAMP] caused a 3-8-fold increase in subsequent 125I-hCG binding. (Bu)2cAMP (1 mM), cholera toxin (11.9 nM) and forskolin (1 microM) each caused a 2-4-fold increase in binding. In the presence of translation (cycloheximide) and transcription (actinomycin D) inhibitors, there was a loss of detectable binding sites. (Bu)2cAMP increased the rate of recovery of binding sites after trypsin treatment of MA10 cells, with a concomitant 2-fold increase in the level of binding sites. Under conditions where receptor levels were increased by 3-8-fold there was also a significant increase in pregnenolone production. It is concluded that LH and cyclic AMP have positive regulatory effects on LH receptors in MA10 cells by inducing the synthesis of new receptors. These induced receptors are functionally coupled to steroidogenesis.
SUBMITTER: West AP
PROVIDER: S-EPMC1131750 | biostudies-other | 1990 Sep
REPOSITORIES: biostudies-other
ACCESS DATA