Hyperosmolarity leads to an increase in derepressed system A activity in the renal epithelial cell line NBL-1.
Ontology highlight
ABSTRACT: Hyperosmolarity induced an increase in Na(+)-dependent L-alanine uptake in confluent monolayers of the established renal epithelial cell line NBL-1. This induction was attributable to system A and was only seen when the cells had been previously deprived of amino acids in the culture medium to derepress system A activity. It was additive to the adaptive regulation induction, and both were inhibited by cycloheximide. However, the hyperosmolarity effect was inhibited by colcemid (an inhibitor of microtubular function), but adaptive regulation was not. Otherwise, when cell monolayers were incubated in a control medium, basal Na(+)-dependent L-alanine uptake mediated by system B0 decreased. The results of this study show that: (i) system A activity was not induced by cell shrinkage and subsequent swelling due to extracellular hyperosmolarity when cells were incubated in control medium; (ii) previous expression of system A activity induced by amino acid starvation seems to be a prerequisite for further induction due to hyperosmolarity; and (iii) the effects of adaptive regulation and hyperosmotic stress are mediated by different mechanisms.
SUBMITTER: Soler C
PROVIDER: S-EPMC1132225 | biostudies-other | 1993 Feb
REPOSITORIES: biostudies-other
ACCESS DATA