Inhibitory effect of okadaic acid derivatives on protein phosphatases. A study on structure-affinity relationship.
Ontology highlight
ABSTRACT: The effect of structural modifications of okadaic acid (OA), a polyether C38 fatty acid, was studied on its inhibitory activity toward type 1 and type 2A protein phosphatases (PP1 and PP2A) by using OA derivatives obtained either by isolation from natural sources or by chemical processes. The dissociation constant (Ki) for the interaction of OA with PP2A was estimated to be 30 (26-33) nM [median (95% confidence limits)]. The OA derivatives used and their affinity for PP2A, expressed as Ki (in brackets) were as follows: 35-methyl-OA (DTX1) [19 (12-25) pM], OA-9,10-episulphide (acanthifolicin) [47 (25-60) pM], 7-deoxy-OA [69 (31-138) pM], 14,15-dihydro-OA [315 (275-360) pM], 2-deoxy-OA [899 (763-1044) pM], 7-O-palmitoyl-OA [greater than 100 nM], 7-O-palmitoyl-DTX1 [greater than 100 nM], methyl okadate [much greater than 100 nM], 2-oxo-decarboxy-OA [much greater than 100 nM] and the C-15-C-38 fragment of OA [much greater than 100 nM]. The sequence of the affinity of these derivatives for PP1 was essentially the same as that observed with PP2A, although the absolute values of Ki were very different for the enzymes. The inhibitory effect of OA on PP2A was reversed by applying a murine monoclonal antibody against OA, which recognizes modifications of the 7-hydroxyl group of the OA molecule. It has been shown by n.m.r. spectroscopy and X-ray analysis that one end (C-1-C-24) of the OA molecule assumes a circular conformation. The present results suggest the importance of the conformation for the inhibitory action of OA on the protein phosphatases. The ratios of the Ki values for PP1 to that for PP2A, which were within the range 10(3)-10(4), tended to be smaller for the derivatives with lower affinity, indicating that the structural changes in OA impaired the affinity for PP2A more strongly than that for PP1.
SUBMITTER: Takai A
PROVIDER: S-EPMC1132671 | biostudies-other | 1992 Jun
REPOSITORIES: biostudies-other
ACCESS DATA