Inhibition of protein N-glycosylation by 2-deoxy-2-fluoro-D-galactose.
Ontology highlight
ABSTRACT: The effects of 2-deoxy-2-fluoro-D-galactose (dGalF) on N- and O-glycosylation of proteins was studied in rat hepatocyte primary cultures and in human monocytes. In hepatocytes, dGalF at concentrations of 1 mM or higher completely inhibited N-glycosylation of alpha 1-antitrypsin and alpha 1-acid glycoprotein, whereas 4 mM-2-deoxy-D-galactose (dGal) only slightly impaired N-glycosylation. In monocytes, 1 mM- or 4 mM-dGalF blocked N-glycosylation of alpha 1-antitrypsin and of interleukin-6, while O-glycosylation of interleukin-6 remained unaffected. In monocytes, dGal had no effect on protein N-glycosylation. Addition of uridine effectively prevented the UTP deficiency induced by dGalF, but had no effect on the inhibition of protein N-glycosylation by dGalF. Using 19F-n.m.r. spectroscopy, 2-deoxy-2-fluoro-D-galactose 1-phosphate (dGalF-1-P), UDP-dGalF and UDP-dGlcF could be identified as the major metabolites of dGalF in hepatocytes as well as in monocytes. In conclusion, compared with dGal, dGalF is a more efficient inhibitor of protein N-glycosylation. The effect is not caused by the depletion of UTP induced by dGalF, but rather by metabolites of dGalF. dGalF is metabolized not only in hepatocytes but also in peripheral blood monocytes, which can be used for ex vivo studies of disturbances in D-galactose metabolism.
SUBMITTER: Gross V
PROVIDER: S-EPMC1132869 | biostudies-other | 1992 Aug
REPOSITORIES: biostudies-other
ACCESS DATA