Differential control of the functional cell surface expression and content of hexose transporter GLUT-1 by glucose and glucose metabolism in murine fibroblasts.
Ontology highlight
ABSTRACT: The present paper evaluates the contributions of glucose and its metabolites to the post-translational regulation of hexose transport and GLUT-1 content in murine fibroblasts. The effects of 3-O-methylglucose, a nearly non-metabolizable glucose analogue, on 2-deoxyglucose-uptake, cell-surface expression and content of GLUT-1, glucose 6-phosphate levels, and phosphoglucose isomerase (PGI) and hexokinase activities of murine fibroblasts were compared with those of glucose and fructose. Glucose (EC50 approximately 6 mM) or 3-O-methylglucose (EC50 approximately 12 mM), which are substrates of GLUT-1, but not fructose, which is not transported by GLUT-1, are able to prevent the glucose-deprivation-induced increases in both hexose transport and cell-surface expression of GLUT-1. In contrast, glucose (EC50 approximately 6 mM), but not 3-O-methylglucose or fructose, prevents the glucose-deprivation-induced accumulation of total GLUT-1 polypeptides. Glucose (> or = 5 mM), but not fructose or 3-O-methylglucose, leads to significant glucose 6-phosphate accumulation. Although 3-O-methylglucose is weakly phosphorylated by fibroblasts, accumulation of phosphorylated product does not correlate with hexose-transport regulation. The activities of hexokinase and PGI are not altered by glucose, fructose or 3-O-methylglucose. We suggest that, in murine fibroblasts: (i) hexose transport and GLUT-1 content are differentially regulated; (ii) substrates of GLUT-1 and/or their immediate metabolites regulate the cell-surface expression of functional GLUT-1; and (iii) glucose metabolism is required for the regulation of GLUT-1 content.
SUBMITTER: Ortiz PA
PROVIDER: S-EPMC1134821 | biostudies-other | 1993 Oct
REPOSITORIES: biostudies-other
ACCESS DATA