A water molecule participates in the secondary structure of hyaluronan.
Ontology highlight
ABSTRACT: The structure of hyaluronan was investigated in water/dimethyl sulphoxide mixtures by using high-field n.m.r. and space-filling molecular models. The secondary structure previously established in detail in 'dry' dimethyl sulphoxide [Heatley, Scott & Hull (1984) Biochem. J. 220, 197-205] undergoes changes on addition of water, compatible with the incorporation of a water bridge between the uronate carboxylate and acetamido NH groups. Molecular models show that such a configuration is highly probable, and saturation-transfer experiments yield rates of NH proton exchange that support this proposed structure. The existence of two distinct stable configurations for hyaluronan, in water-rich and water-poor conditions respectively, may have biological implications, e.g. during its biosynthesis in cell membranes. There are extensive hydrophobic regions in both forms, which may be important for interactions with e.g., membranes, proteins and itself.
SUBMITTER: Heatley F
PROVIDER: S-EPMC1135104 | biostudies-other | 1988 Sep
REPOSITORIES: biostudies-other
ACCESS DATA