Unknown

Dataset Information

0

Degradation of glomerular basement membrane by purified mammalian metalloproteinases.


ABSTRACT: Neutral metalloproteinases degrade components of the extracellular matrix, including collagen types I-V, fibronectin, laminin and proteoglycan. However, their ability to degrade intact glomerular basement membrane (GBM) has not previously been investigated. Incubation of [3H]GBM (50,000 c.p.m.; pH 7.5; 24 h at 37 degrees C) with purified gelatinase or stromelysin (2 units) resulted in significant GBM degradation: gelatinase, 46 +/- 2.2; stromelysin, 59 +/- 5.8 (means +/- S.E.M.; percentage release of non-sedimentable radioactivity; n = 4). In contrast, 2 units of collagenase released only 5.6 +/- 0.52% (n = 3) of the [3H]GBM radioactivity compared with 2.0 +/- 0.15% (n = 7) released from [3H]GBM incubated alone. Sephadex G-200 gel chromatography of supernatants obtained from incubations of [3H]GBM with either gelatinase or stromelysin confirmed the ability of these enzymes to degrade GBM and revealed both high-(800,000) and relatively low-(less than 20,000) Mr degradation products for both enzymes. GBM degradation by gelatinase and stromelysin was dose-dependent (range 0.02-2.0 units), near maximal between pH 6.0 and 8.6, and was completely inhibited (greater than 95%) by 2 mM-o-phenanthroline. Collagenase (2 units) did not enhance the degradation of GBM by either gelatinase (0.02 or 0.2 unit) or stromelysin (0.02 or 0.2 unit). Our results indicate that metalloproteinase-mediated GBM degradation by neutrophils and glomeruli may be attributable to gelatinase (neutrophils) and/or stromelysin (glomeruli) and suggest an important role for these proteinases in glomerular pathophysiology.

SUBMITTER: Baricos WH 

PROVIDER: S-EPMC1135122 | biostudies-other | 1988 Sep

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6603348 | biostudies-literature
2008-01-01 | GSE10017 | GEO
| S-EPMC3790497 | biostudies-literature
| S-EPMC6877440 | biostudies-literature
2024-09-20 | E-MTAB-13457 | biostudies-arrayexpress
| S-EPMC8484114 | biostudies-literature
2015-07-14 | E-GEOD-46295 | biostudies-arrayexpress
2015-07-14 | GSE46295 | GEO
| S-EPMC1149139 | biostudies-other
| S-EPMC6146048 | biostudies-literature