The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium.
Ontology highlight
ABSTRACT: Pigment synthesis in four strains of the unicellular red alga Cyanidium caldarium with different pigment-synthesizing patterns was inhibited in the presence of gabaculine (3-amino-2,3-dihydrobenzoic acid). Parallel inhibition of light-induced chlorophyll and phycocyanin synthesis was observed in strain III-D-2, which only synthesizes pigments in the light. Similar parallel inhibition was observed in the dark in mutant CPD, which is able to synthesize chlorophyll and phycocyanin in the absence of light. Inhibition of pigment synthesis in all strains was overcome by addition of 5-aminolaevulinic acid. Inhibition of phycocyanin synthesis in mutant GGB (unable to synthesize chlorophyll) and inhibition of chlorophyll synthesis in mutant III-C (unable to synthesize phycocyanin) were also observed. Gabaculine also inhibited the heterotrophic growth of C. caldarium in the dark. However, inhibition was overcome after an extended lag period, following which cell growth proceeded at a similar rate to that of control cells not exposed to gabaculine. Heterotrophic growth in cells pre-exposed to gabaculine was not inhibited by subsequent exposure. Possible mechanisms for this adaptation are discussed.
SUBMITTER: Houghton JD
PROVIDER: S-EPMC1135170 | biostudies-other | 1988 Sep
REPOSITORIES: biostudies-other
ACCESS DATA