ABSTRACT: Diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) induce distinctive patterns of [Ca2+]i oscillations in single rat hepatocytes. We show here that [Ca2+]i oscillations induced by Ap3A and ADP are indistinguishable and that [Ca2+]i oscillations induced by Ap4A closely resemble those induced by ATP. These similarities embrace the following: (1) ADP and Ap3A invariably induce [Ca2+]i transients of short duration (approx. 9 s). Ap4A, like ATP, can induce, depending upon the individual cell, either transients of short duration (approx. 9 s), transients of much longer duration or a mixture of short and long transients within a single response. We show here that the pattern of oscillations induced by Ap4A is similar to that induced by ATP in the same hepatocyte. (2) Elevated intracellular cyclic AMP concentration modulates Ap3A-induced transients, like ADP-induced transients, through an increase in both the peak [Ca2+]i and the frequency of the transients. In contrast, Ap4A-induced transients, like ATP-induced transients, develop an increased duration or a sustained rise in [Ca2+]i, with no rise in peak [Ca2+]i. (3) Ap3A-induced transients, like ADP-induced transients, are abolished by low concentrations of the phorbol ester 4 beta-phorbol 12,13-dibutyrate (PDB; 5-10 nM), whereas long Ap4A-induced transients, like long ATP-induced transients, are refractory to high concentrations of PDB (100 nM). We propose that the [Ca2+]i oscillations induced in rat hepatocytes by Ap3A are mediated by the same purinoceptor that mediates the effects of ADP, whereas the oscillations induced by Ap4A are mediated by the same purinoceptor(s) that mediate the effects of ATP.