Biosynthesis of glycosylphosphatidylinositol-anchored human placental alkaline phosphatase: evidence for a phospholipase C-sensitive precursor and its post-attachment conversion into a phospholipase C-resistant form.
Ontology highlight
ABSTRACT: Previous studies have shown that some cells (e.g. SKG3a) express human placental alkaline phosphatase (AP) in a form which can be released from the membrane by bacterial PtdIns-specific phospholipase C (PI-PLC) while others (e.g. HeLa) are relatively resistant to this enzyme. Chemical and enzymic degradation studies have suggested that the PI-PLC resistance of AP is due to inositol acylation of its glycosylphosphatidylinositol (GPI) anchor. In order to identify the biosynthetic origin of PI-PLC resistance we determined the PI-PLC sensitivity of AP in 35S-labelled cells (10 min pulse; 0-60 min chase) by Triton X-114 phase separation. At the beginning of the chase period, the majority of the AP synthesized was hydrophilic, indicating that it had not acquired a GPI anchor. The concentration of hydrophilic AP species decreased with a t1/2 of 30-60 min but was not processed to an endoglycosidase H-resistant species or secreted into the medium. In both SKG3a and HeLa cells all of the hydrophobic, GPI-anchored AP detectable at the beginning of the chase was PI-PLC sensitive. PI-PLC-resistant species of AP were only observed in HeLa cells and these only appeared after about 30 min. The delayed appearance of PI-PLC resistance was unexpected as previous studies have suggested that candidate GPI-anchor precursors are PI-PLC-resistant as a result of inositol acylation. This work reveals unanticipated complexities in the biosynthesis of AP and its GPI anchor.
SUBMITTER: Wong YW
PROVIDER: S-EPMC1137163 | biostudies-other | 1994 Jul
REPOSITORIES: biostudies-other
ACCESS DATA