Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.
Ontology highlight
ABSTRACT: N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not.
Project description:BackgroundSecretory leukoproteinase inhibitor (SLPI) is an important inhibitor of neutrophil elastase (NE), a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes in vitro.MethodsRespiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling.ResultsWe observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration.ConclusionThese data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon in vitro, which may correlate with changes observed in vivo.
Project description:Using a combination of multisite λ-dynamics (MSλD) together with in vitro IC50 assays, we evaluated the polypharmacological potential of a scaffold currently in clinical trials for inhibition of human neutrophil elastase (HNE), targeting cardiopulmonary disease, for efficacious inhibition of Proteinase 3 (PR3), a related neutrophil serine proteinase. The affinities we observe suggest that the dihydropyrimidinone scaffold can serve as a suitable starting point for the establishment of polypharmacologically targeting both enzymes and enhancing the potential for treatments addressing diseases like chronic obstructive pulmonary disease.
Project description:Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of ?-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.
Project description:Neutrophil granulocytes form the body's first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex-mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents.
Project description:Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation. However, details of intracellular signaling downstream of ROS production during NETosis and NET formation remains uncertain. Here, we demonstrated that the peroxidation of phospholipids plays a critical role in NETosis and NET formation induced by phorbol 12-myristate13-acetate (PMA) or immune complex in vitro and by lipopolysaccharide (LPS) in vivo. This phospholipid peroxidation is mediated by the enzymatic activity of MPO. On the other hand, NE, which was previously reported to be released from granules to cytosol by MPO during NET formation, is not required for either the peroxidation of phospholipids or the execution of NETosis, but contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. Analysis of isolated nuclei clearly demonstrated that oxidized phospholipids and NE differently yet synergistically execute chromatin decondensation and nuclear swelling, and the subsequent release of nuclear contents. These findings indicate the dual roles of MPO in NETosis and NET formation, and provide new insight into the molecular mechanism of these phenomena.
Project description:We have investigated the effect of human lung elastin on the inhibition of human leucocyte elastase by human alpha 1-proteinase inhibitor and bronchial inhibitor. Elastin was unable to dissociate the elastase-inhibitor complexes during the 150 min of the elastolysis reaction. When elastase was added to mixtures of elastin and alpha 1-proteinase inhibitor, it was fully bound to the latter. The competition between elastin and bronchial inhibitor was also in favour of the latter, but a 1.5 molar excess of inhibitor over elastase was required to achieve total binding of the enzyme. About 25% of elastin-bound elastase was found to be resistant to the inhibitory effect of alpha 1-proteinase inhibitor. The major isoenzyme and the mixture of the three minor isoenzymes of elastase exhibited similar behaviour. By contrast, bronchial inhibitor was as efficient in inhibiting the elastin-bound elastase as it was in inhibiting the free enzyme. This inhibitor was also able to inhibit fully the fraction of elastin-bound elastase that was resistant to alpha 1-proteinase inhibitor. We also describe a rapid procedure for the isolation of gram quantities of alpha 1-proteinase inhibitor.
Project description:Human neutrophil elastase (HNE) is involved in a number of essential physiological processes and has been identified as a potential therapeutic target for treating acute and chronic lung injury. Nevertheless, only one drug, Sivelestat, has been approved for clinical use and just in Japan and the Republic of Korea. Thus, there is an urgent need for the development of low-molecular-weight synthetic HNE inhibitors, and we have developed a wide variety of HNE inhibitors with various chemical scaffolds. We hypothesized that substitution of the active fragment of Sivelestat into these HNE inhibitor scaffolds could modulate their inhibitory activity, potentially resulting in higher efficacy and/or improved chemical stability. Here, we report the synthesis, biological evaluation, and molecular modeling studies of novel compounds substituted with the 4-(sulfamoyl)phenyl pivalate fragment necessary for Sivelestat activity. Many of these compounds were potent HNE inhibitors with activity in the nanomolar range (IC50 = 19-30 nM for compounds 3a, 3b, 3f, 3g, and 9a), confirming that the 4-(sulfamoyl)phenyl pivalate fragment could substitute for the N-CO group at position 1 and offer a different point of attack for Ser195. Results of molecular docking of the these pivaloyl-containing compounds into the HNE binding site supported the mechanism of inhibitory activity involving a nucleophilic attack of Ser195 from the catalytic triad onto the pivaloyl carbonyl group. Furthermore, some compounds (e.g., 3a and 3f) had a relatively good stability in aqueous buffer (t1/2 > 9 h). Thus, this novel approach led to the identification of a number of potent HNE inhibitors that could be used as leads for the further development of new therapeutics.
Project description:Heparin tightly binds cathepsin G and so protects the enzyme from inhibition by alpha1-antichymotrypsin, alpha1-proteinase inhibitor and eglin c, three proteins which do not bind heparin [Ermolieff J., Boudier C., Laine A., Meyer B. and Bieth J.G. (1994) J. Biol. Chem. 269, 29502-29508]. Here we show that heparin no longer protects cathepsin G from inhibition when the enzyme is reacted with mucus proteinase inhibitor (MPI), a heparin-binding protein. Heparin fragments of Mr=4500 and 8100 and O-butyrylated heparin of Mr=8000 form tight complexes with cathepsin G (Kd=0.5-2.2 nM) and MPI (Kd=0. 4-0.8 muM) and accelerate the MPI-promoted inhibition of cathepsin G by a factor of 17-26. They also accelerate the inhibition of neutrophil elastase and pancreatic chymotrypsin. The rate acceleration is due to the binding of heparin to MPI. Butyrylation of heparin slightly decreases its affinity for cathepsin G and MPI but sharply decreases the ionic interactions between the positively charged proteins and the negatively charged polyanion. The butyrylated heparin derivative is the best rate accelerator: it increases the rate constant for the MPI-induced inhibition of cathepsin G and elastase by factors of 26 and 23, respectively. This, together with the fact that it has a good bioavailability and a very low anticoagulant activity, suggests that it might be an adjuvant of MPI-based therapy of cystic fibrosis.
Project description:The balance between neutrophil serine proteases (NSPs) and protease inhibitors (PIs) in the lung is a critical determinant for a number of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease, cystic fibrosis and acute lung injury. During activation at inflammatory sites, excessive release of NSPs such as human neutrophil elastase (HNE), proteinase 3 (Pr3) and cathepsin G (CatG), leads to destruction of the lung matrix and continued propagation of acute inflammation. Under normal conditions, PIs counteract these effects by inactivating NSPs; however, in chronic inflammatory lung diseases, there are insufficient amounts of PIs to mitigate damage. Therapeutic strategies are needed to modulate excessive NSP activity for the clinical management of chronic inflammatory lung diseases. In the study reported here, a panel of N-arylacyl O-sulfonated aminoglycosides was screened to identify inhibitors of the NSPs. Dose-dependent inhibitors for each individual serine protease were identified. Select compounds were found to inhibit multiple NSPs, including one lead structure that is shown to inhibit all three NSPs. Two lead compounds identified during the screen for each individual NSP were further characterized as partial mixed inhibitors of CatG. Concentration-dependent inhibition of protease-mediated detachment of lung epithelial cells is demonstrated.
Project description:The serine protease neutrophil elastase (NE) appears to regulate inflammatory responses at multiple levels but its role in leukocyte transmigration in vivo remains unclear. The present study aimed to address this issue by using both an NE inhibitor (ONO-5046) and NE deficient (NE(-/-)) mice.A number of inflammatory mediators (LTB(4), KC and PAF) were investigated in vitro for their ability to stimulate the release and the surface expression of NE by neutrophils. In addition, the role of NE in leukocyte migration elicited by topical LTB(4) was investigated in vivo in mouse cremasteric venules as observed by intravital microscopy.Amongst the mediators tested in vitro, LTB(4) was found to be a highly potent and efficacious inducer of NE cell surface expression on murine neutrophils. Furthermore, in wild-type mice (WT), LTB(4)-induced leukocyte transmigration was reduced by intravenous ONO-5046 (66% inhibition), an effect that appeared to occur at the level of the perivascular basement membrane. Interestingly, LTB(4)-induced responses were normal in NE(-/-) mice and, while ONO-5046 had no inhibitory effect in these animals, the broad-spectrum serine protease inhibitor aprotinin suppressed leukocyte transmigration in both WT and NE(-/-) mice.The findings demonstrate the potent ability of LTB(4) to induce cell-surface expression of NE and provide evidence for the involvement of NE in LTB(4)-induced neutrophil transmigration in vivo. The results also suggest the existence of compensatory mechanisms in NE(-/-) mice, highlighting the added value of investigating pharmacological blockers in parallel with genetic deletion.