Unknown

Dataset Information

0

Altered hepatic catabolism of low-density lipoprotein subjected to lipid peroxidation in vitro.


ABSTRACT: Recent evidence suggests that oxidatively modified forms of low-density lipoprotein (LDL) may be particularly atherogenic. In this investigation, the catabolism of human LDL modified by lipid peroxidation in vitro was studied with a recirculating rat liver perfusion system. A dual-labelling technique was used that permitted native LDL and modified LDL to be studied simultaneously in the liver perfusion system. Native human LDL was found to have a fractional catabolic rate (FCR) of 1.00 +/- 0.21%/h, in agreement with other investigators. Subjecting LDL to oxidation for 12 h in the presence of 30 microM FeEDTA did not significantly affect its FCR. LDL treated with a superoxide-generating system (xanthine oxidase, hypoxanthine, O2) in the presence of 30 microM FeEDTA did, however, show a significant increase in FCR (3.23 +/- 0.19%/h). The hepatic uptakes of native LDL and LDL oxidized with FeEDTA+O2 were similar, but both were significantly lower than the hepatic uptake of LDL treated with the superoxide-radical-generating system. The proteolysis of LDL with pancreatin did not influence either its susceptibility to oxidation or its FCR. LDL oxidation resulted in the preferential loss of alpha-tocopherol rather than gamma-tocopherol. These data indicate that the rat liver effectively catabolizes LDL oxidatively modified by treatment with the superoxide-generating system. Furthermore, our results suggest that only very low plasma levels of highly oxidized LDL could be found under conditions in vivo. The liver may therefore play a major role in protecting the arterial vasculature from highly atherogenic forms of LDL.

SUBMITTER: Stone WL 

PROVIDER: S-EPMC1137872 | biostudies-other | 1994 Feb

REPOSITORIES: biostudies-other

Similar Datasets

2017-03-08 | GSE87743 | GEO
| S-EPMC5313158 | biostudies-literature
| S-EPMC7819740 | biostudies-literature
| S-EPMC4306694 | biostudies-literature
| S-EPMC4196440 | biostudies-literature
| S-EPMC7697660 | biostudies-literature
| S-EPMC6457439 | biostudies-literature
| S-EPMC3446698 | biostudies-literature
| S-EPMC3716867 | biostudies-literature
| S-EPMC4416867 | biostudies-literature