Epidermal growth factor stimulates distinct diradylglycerol species generation in Swiss 3T3 fibroblasts: evidence for a potential phosphatidylcholine-specific phospholipase C-catalysed pathway.
Ontology highlight
ABSTRACT: Stimulation of 3T3 fibroblasts with epidermal growth factor (EGF) results in an increase in 1,2-diacylglycerol (DAG) mass which is maximal at 25 s, declining at 1 min and returning to basal levels by 30 min. No changes in alkylacylglycerol or alkenylacylglycerol were detected. Three species account for most of this mass increase: 18:0/20:5,n-3, 18:0/20:4,n-6 and 18:0/20:3,n-9. These species are characteristic of the phosphoinositides; however, previous work failed to detect any EGF-stimulated rise in inositol phosphates in these cells [Cook and Wakelam (1992) Biochem. J. 285, 247-253]. This ruled out phosphoinositide hydrolysis by phospholipase C, but raised the possibility of phospholipase D/phosphatidate phosphohydrolase-catalysed hydrolysis of phosphatidylinositol. The inclusion of butanol in the incubation medium failed to block the diacylglycerol changes, indicating that the phospholipase D pathway is not involved and that DAG must be derived from another source, probably via phospholipase C-catalysed hydrolysis of a phosphatidylcholine pool that is particularly rich in these species. The tyrosine kinase inhibitor ST-271 almost abolished the elevation in 18:0/20:5,n-3, 18:0/20:4, n-6 and 18:0/20:3,n-9 at 25 s, but only reduced the rise in total DAG mass by about 50%. The protein kinase C (PKC) inhibitor Ro-31-8220 increased DAG levels at all time points but had no effect on the species profiles. This provides additional evidence for PKC-mediated regulation of cell-surface EGF receptors, since the inhibition of PKC would increase the availability and/or ligand binding affinity of receptors at the plasma membrane and hence increase and prolong the response to EGF.
SUBMITTER: Pettitt TR
PROVIDER: S-EPMC1137910 | biostudies-other | 1994 Mar
REPOSITORIES: biostudies-other
ACCESS DATA