Turnover of eicosanoid precursor fatty acids among phospholipid classes and subclasses of cultured human umbilical vein endothelial cells.
Ontology highlight
ABSTRACT: Using cultured human umbilical vein endothelial cells, in which phosphatidylcholine (PC) is equally pulse-labelled by various eicosanoid precursor fatty acids (EPFAs), we have studied the remodelling of EPFAs among the phospholipid classes and subclasses with and without activation, and the relationship of this remodelling process to the selective release of arachidonic acid (AA) by phospholipase A2-mediated cell stimulation. When endothelial cells are pulse-incubated with radiolabelled EPFA for 15 min, greater than 80% of cell-associated radioactivity is present in phospholipids, among which greater than 60% is found in 1,2-diacyl-sn-glycero-3-phosphocholine (diacyl PC). After removing unincorporated radioactivity, reincubation of the pulse-labelled cells for up to 6 h results in progressive decrease in EPFA-labelled diacyl PC, increase in AA- or eicosapentaenoic acid (EPA)-labelled 1-O-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine (plasmalogen PE) and increase only in AA-labelled 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl PC). This redistribution of radiolabelled phospholipids is not altered by the presence of excess non-radiolabelled EPFAs. When aspirin-treated EPFA-labelled endothelial cells are stimulated with ionophore A23187, a very selective release of AA is noted in comparison with eicosatrienoate (ETA) or EPA, accompanied by an equivalent decrease in AA-labelled diacyl PC and specific increase in AA-labelled plasmalogen PE and alkyl PC. These selective changes in AA radioactivity induced by A23187 are enhanced 2-fold by pretreating the AA-labelled cells with phorbol 12-myristate 13-acetate, which by itself induces no changes. The changes in radioactivity induced by A23187 without and with phorbol ester among the released AA, the diacyl PC and the plasmalogen PE are significantly correlated with each other. These results indicate that human endothelial cells incorporate EPFAs (AA, ETA, EPA) equally into diacyl PC but selectively release AA esterified into diacyl PC with specific remodelling into plasmalogen PE and alkyl PC.
SUBMITTER: Takayama H
PROVIDER: S-EPMC1138380 | biostudies-other | 1989 Mar
REPOSITORIES: biostudies-other
ACCESS DATA