Ganglioside GM3 sialidase activity in fibroblasts of normal individuals and of patients with sialidosis and mucolipidosis IV. Subcellular distribution and and some properties.
Ontology highlight
ABSTRACT: Sensitive assays for the determination of the ganglioside sialidase activity of fibroblast homogenates were established using ganglioside GM3, 3H-labelled in the sphingosine moiety, as a substrate. Ganglioside GM3 sialidase activity was greatly stimulated by the presence of the non-ionic detergent Triton X-100 and was further enhanced by salts such as NaCl; the optimal pH was 4.5. The subcellular localization of this activity was determined by fractionation using free-flow electrophoresis and found to be exclusively associated with the marker for the plasma membrane, but not with that for lysosomes. This Triton-stimulated ganglioside sialidase activity was selectively inhibited by preincubating intact cells in the presence of millimolar concentrations of Cu2+, suggesting that the activity resides on the external surface of the plasma membrane. In normal fibroblasts homogenates, ganglioside GM3 sialidase was also greatly stimulated by sodium cholate. In contrast to the Triton X-100-activated reaction, however, it was not diminished by prior incubation of intact cells in the presence of Cu2+. Only after cell lysis was Cu2+ inhibitory. the cholate-stimulated ganglioside sialidase activity thus paralleled the behaviour of the lysosomal 4-methylumbelliferyl-alpha-D-N-acetylneuraminic acid (4-MU-NeuAc) sialidase. In fibroblasts from sialidosis patients, the cholate-stimulated ganglioside GM3 sialidase activity, but not that of the Triton-activated enzyme, was profoundly diminished. In fibroblasts from patients with mucolipidosis IV (ML IV), both the Triton X-100- and the cholate-stimulated ganglioside GM3 sialidase activities were in the range of normal controls. The Triton-activated enzyme was associated with the plasma membrane in the same manner as in normal cells. Our findings suggest that, in human fibroblasts, there exist two sialidases that degrade ganglioside GM3: one on the external surface of the plasma membrane, and another that is localized in lysosomes and seems identical with the activity that acts on sialyloligosaccharides and 4-MU-NeuAc. As neither activity was found to be deficient in ML IV fibroblasts, our results argue against the hypothesis of a primary involvement of a ganglioside GM3 sialidase in the pathogenesis of ML IV.
SUBMITTER: Lieser M
PROVIDER: S-EPMC1138626 | biostudies-other | 1989 May
REPOSITORIES: biostudies-other
ACCESS DATA