A kinetic study of the interaction of vanadate with the Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum.
Ontology highlight
ABSTRACT: Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum was inhibited by preincubation with vanadate. When the inhibited enzyme was preincubated in the presence of vanadate and assayed in its absence, a slow reactivation process was observed. This slow, hysteretic, process was exploited to study the influence of Ca2+ and ATP on the dissociation of vanadate. Ca2+ alone slowly displaced vanadate from the inhibited enzyme, and a rate constant of 0.1 min-1, at 25 degrees C, was calculated for this re-activation process. However, ATP re-activated with an apparent constant that hyperbolically depended on ATP concentration, and from it a rate constant for vanadate dissociation induced by ATP of 0.5 min-1 was calculated. It is deduced from the kinetic studies that ATP binds to the enzyme-vanadate complex, forming a ternary complex, with a dissociation constant of 4 microM, and that this binding accelerates vanadate dissociation. Binding experiments with [14C]ATP showed that ATP binds to the enzyme-vanadate complex with a dissociation constant of 12 microM, i.e. the affinities calculated with the isotope technique and the kinetic procedure are of the same order of magnitude.
SUBMITTER: Ortiz A
PROVIDER: S-EPMC1144022 | biostudies-other | 1984 Jul
REPOSITORIES: biostudies-other
ACCESS DATA