Kinetic studies of the reduction of neutrophil cytochrome b-558 by dithionite.
Ontology highlight
ABSTRACT: The reduction with dithionite of neutrophil cytochrome b-558, implicated in superoxide generation by activated neutrophils, was investigated by a stopped-flow technique in non-ionic-detergent extracts of the membranes and in crude membrane particles. The dependence of the pseudo-first-order rate constants on the concentration of dithionite was consistent with a mechanism of reduction that involves the dithionite anion monomer SO2.- as the reactive species. The estimated second-order rate constant was 7.8 X 10(6) M-1 X S-1 for Lubrol PX-solubilized cytochrome b-558 and 5.1 X 10(6) M-1 X S-1 for the membrane-bound protein. The similarity of the kinetic constants suggests that solubilization did not introduce gross changes in the reactive site. Imidazole and p-chloromercuribenzoate, known as inhibitors of NADPH oxidase, did not affect significantly cytochrome b-558 reduction rates. The reaction rate of cytochrome b-558 with dithionite exhibited a near-zero activation energy. The first-order rate constant for reduction decreased with increasing ionic strength, indicating a positive effective charge on the reacting protein.
SUBMITTER: Aviram I
PROVIDER: S-EPMC1147021 | biostudies-other | 1986 Jul
REPOSITORIES: biostudies-other
ACCESS DATA