Structure-function relationships in the free insulin monomer.
Ontology highlight
ABSTRACT: The chemical properties of the functional groups of insulin were determined at a concentration (0.5 microM) where the predominant species of insulin is the free (unassociated) monomeric unit. The glycine N-terminus and the four tyrosine phenolic groups had the same properties as in the associated forms of insulin. On the other hand the lysine epsilon-amino group and the two histidine imidazole groups had substantially altered properties. Some alteration in the properties of the phenylalanine N-terminus was also observed. The reactivity-pH profile for the imidazole groups showed a second ionization with a pKa of 10.1 in addition to an ionization with a pKa of 6.8. On the basis of the X-ray-crystallographic structure of hexameric insulin the observed changes can be accounted for by disruption of monomer-monomer or dimer-dimer interactions in the associated states of insulin. It is concluded that the conformation of the monomeric unit of insulin is essentially the same in its free and associated states in solution.
SUBMITTER: Hefford MA
PROVIDER: S-EPMC1147042 | biostudies-other | 1986 Aug
REPOSITORIES: biostudies-other
ACCESS DATA