Steroid inhibition of calcitriol-induced prolactin production in GH4C1 cells. Specificity and sensitivity.
Ontology highlight
ABSTRACT: The induction of prolactin (PRL)-gene expression by calcitriol (1,25-dihydroxyvitamin D3, 1,25-dihydroxycholecalciferol) in clonal rat pituitary tumour (GH4C1) cells was selectively inhibited by cortisol [IC50 (concentration causing 50% inhibition) = 3.2-4.1 nM]. The steroid specificity of this effect was investigated and various steroids were found to inhibit calcitriol-stimulated PRL production with the following relative potencies: cortisol, 1; dexamethasone, 8; 11-deoxycortisol, 0.5; corticosterone, 0.4; aldosterone, 0.07; testosterone and oestradiol, less than 0.003. The steroid antagonist RU 38486 did not affect basal or calcitriol-stimulated PRL production, but antagonized the effect of 10 nM-cortisol in a concentration-dependent manner. Neither progesterone nor 11-deoxycortisol antagonized the effect of 10 nM-cortisol. Calcitriol-induced PRL production was 14 times more sensitive to dexamethasone inhibition than was non-stimulated PRL production. Growth-hormone production was stimulated by dexamethasone, in the presence or absence of calcitriol, with a concentration-dependence similar to that of dexamethasone inhibition of basal PRL production. These data indicate that steroid inhibition of calcitriol-stimulated PRL production is a specific glucocorticoid effect. The sensitivity of calcitriol-stimulated PRL production to dexamethasone was 14-26-fold greater than that of other measured responses in the same cells. Two of the possible explanations for this selectively increased sensitivity to glucocorticoids are: amplification of the glucocorticoid effect via an induced mediator; and the presence of very-high-affinity glucocorticoid-receptor-binding sites on DNA.
SUBMITTER: Wark JD
PROVIDER: S-EPMC1147573 | biostudies-other | 1987 Jan
REPOSITORIES: biostudies-other
ACCESS DATA