Unknown

Dataset Information

0

Potassium-channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fractions isolated from the rat brain.


ABSTRACT: The ionic mechanism of inositol trisphosphate (InsP3)-induced Ca2+ release was investigated in microsomes (microsomal fractions) isolated from rat brain. InsP3 stimulated Ca2+ release from microsomes incubated in media containing 100 mM-KCl. The InsP3-induced Ca2+ release was insensitive to a variety of Ca2+-channel blockers; however, the K+-channel blockers tetraethylammonium chloride (TEA; 1 mM) and 9-tetraethylammonium chloride (9-TEA; 1 mM) blocked InsP3-induced Ca2+ release. Moreover, addition of InsP3 increased 86Rb+ influx into the microsomes. The influx of 86Rb+ also was sensitive to TEA and 9-TEA. The above results suggest that InsP3-induced Ca2+ release requires an opposite flow of K+ ions, and modulation of K+ channels by TEA and 9-TEA may underlie the inhibition of InsP3-induced Ca2+ release from brain microsomes by these agents.

SUBMITTER: Shah J 

PROVIDER: S-EPMC1148899 | biostudies-other | 1988 Mar

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1138349 | biostudies-other
| S-EPMC3273964 | biostudies-literature
| S-EPMC4893809 | biostudies-literature
| S-EPMC3572306 | biostudies-literature
| S-EPMC8243404 | biostudies-literature
| S-EPMC1148018 | biostudies-other
| S-EPMC7155789 | biostudies-literature
| S-EPMC4190111 | biostudies-literature
| S-EPMC7939385 | biostudies-literature
| S-EPMC3035040 | biostudies-literature