Opioid peptides promote cholera-toxin-catalysed ADP-ribosylation of the inhibitory guanine-nucleotide-binding protein (Gi) in membranes of neuroblastoma x glioma hybrid cells.
Ontology highlight
ABSTRACT: NG108-15 neuroblastoma x glioma hybrid cells express a major 45 kDa substrate for cholera toxin and a 40 kDa substrate(s) for pertussis toxin when ADP-ribosylation is performed in the presence of GTP. In the absence of exogenous GTP, however, cholera toxin was shown to catalyse incorporation of radioactivity into a 40 kDa protein as well as into the 45 kDa polypeptide. In membranes of cells which had been pretreated in vivo with pertussis toxin, the 40 kDa band was no longer a substrate for either pertussis or cholera toxin in vitro, whereas in membranes from cholera-toxin-pretreated cells the 40 kDa band was still a substrate for fresh cholera toxin in vitro and for pertussis toxin. In this cell line, opioid peptides have been shown to inhibit adenylate cyclase exclusively by interacting with Gi (inhibitory G-protein) and with no other pertussis-toxin-sensitive G-protein. Opioid agonists, but not antagonists, promoted the cholera-toxin-catalysed ADP-ribosylation of the 40 kDa polypeptide, hence demonstrating that this cholera-toxin substrate was indeed the alpha-subunit of Gi. These results demonstrate that Gi can be a substrate for either cholera or pertussis toxin under appropriate conditions.
SUBMITTER: Milligan G
PROVIDER: S-EPMC1149154 | biostudies-other | 1988 Jun
REPOSITORIES: biostudies-other
ACCESS DATA