Unknown

Dataset Information

0

Epidermal-growth-factor-induced formation of inositol phosphates in human A431 cells. Differences from the effect of bradykinin.


ABSTRACT: In human A431 epidermoid carcinoma cells, epidermal growth factor (EGF) rapidly stimulates the breakdown of inositol phospholipids and raises cytoplasmic free [Ca2+]. In this paper, we investigate the action of EGF on inositol phosphate metabolism, and we compare it with the previously described effects of bradykinin on the same cell system [Tilly, van Paridon, Verlaan, Wirtz, de Laat & Moolenaar (1987) Biochem. J. 244, 129-135]. In cells prelabelled with [3H]inositol, EGF slowly but persistently (for at least 30 min) stimulates the formation of [3H]inositol phosphates, whereas bradykinin causes an immediate but transient release of inositol phosphates, which lasts for only a few minutes. The EGF effect is additive to bradykinin stimulation and does not require extracellular Ca2+. In contrast, inositol phosphate formation induced by Ca2+-ionophore A23187 has an absolute requirement for external Ca2+. Treatment of the cells with 12-O-tetradecanoylphorbol 13-acetate completely abolishes the response to EGF and to sub-optimal doses of bradykinin, suggesting a negative-feedback function of protein kinase C. Pretreatment of the cells with pertussis toxin has no effect on inositol phosphate formation induced by either EGF or bradykinin. Unlike bradykinin, EGF stimulates very little accumulation of inositol 1,4,5-trisphosphate, with only a small and rather variable release of Ca2+ from intracellular stores. EGF rapidly but transiently increases inositol 1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate, but the effects are much smaller than those of bradykinin. In addition, EGF increases both inositol mono- and bis-phosphate. At 10 min after EGF addition, inositol monophosphate, unlike the other inositol phosphates, is still increasing. It is concluded that the EGF-dependent pattern of stimulation is different from that observed in bradykinin-stimulated A431 cells, suggesting that there are separate mechanisms of inositol-lipid hydrolysis involved.

SUBMITTER: Tilly BC 

PROVIDER: S-EPMC1149226 | biostudies-other | 1988 Jun

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3308840 | biostudies-literature
| S-EPMC1220976 | biostudies-other
| S-EPMC1147963 | biostudies-other
| S-EPMC1137551 | biostudies-other
| S-EPMC2186246 | biostudies-literature
| S-EPMC1138338 | biostudies-other
| S-EPMC8703376 | biostudies-literature
| S-EPMC9695916 | biostudies-literature
| S-EPMC4029425 | biostudies-literature
| S-EPMC6242333 | biostudies-literature