A pH-dependent activation-inactivation equilibrium in glutamate dehydrogenase of Clostridium symbiosum.
Ontology highlight
ABSTRACT: 1. On transferring Clostridium symbiosum glutamate dehydrogenase from pH 7 to assay mixtures at pH 8.8, reaction time courses showed a marked deceleration that was not attributable to the approach to equilibrium of the catalysed reaction. The rate became approximately constant after declining to 4-5% of the initial value. Enzyme, stored at pH 8.8 and assayed in the same mixture, gave an accelerating time course with the same final linear rate. The enzyme appears to be reversibly converted from a high-activity form at low pH to a low-activity form at high pH. 2. Re-activation at 31 degrees C upon dilution from pH 8.8 to pH 7 was followed by periodic assay of the diluted enzyme solution. At low ionic strength (5 mM-Tris/HCl), no re-activation occurred, but various salts promoted re-activation to a limiting rate, with full re-activation in 40 min. 3. Re-activation was very temperature-dependent and extremely slow at 4 degrees C, suggesting a large activation energy. 4. 2-Oxoglutarate, glutarate or succinate (10 mM) accelerated re-activation; L-glutamate and L-aspartate were much less effective. 5. The monocarboxylic amino acids alanine and norvaline appear to stabilize the inactive enzyme: 60 mM-alanine does not promote re-activation, and, as substrates at pH 8.8 for enzyme stored at pH 7, alanine and norvaline give progress curves showing rapid complete inactivation. 6. Mono- and di-nucleotides (AMP, ADP, ATP, NAD+, NADH, NADP+, CoA, acetyl-CoA) at low concentrations (10(-4)-10(-3) M) enhance re-activation at pH 7 and also retard inactivation at pH 8.8. 7. The re-activation rate is independent of enzyme concentration: ultracentrifuge experiments show no changes in molecular mass with or without substrates. 8. The activation-inactivation appears to be due to a slow pH-dependent conformational change that is sensitively responsive to the reactants and their analogues.
SUBMITTER: Syed SE
PROVIDER: S-EPMC1149561 | biostudies-other | 1990 Oct
REPOSITORIES: biostudies-other
ACCESS DATA