Effects of lithium ions on actin polymerization in the presence of magnesium ions.
Ontology highlight
ABSTRACT: In spite of the abundant literature, questions on the biological action of Li+ are far from being answered. In the present paper we demonstrate that modification of the salt composition of the medium for actin polymerization, by gradually replacing K+ with Li+, leads to a dose-related change in the time course of actin assembly. The presence of Li+ influences actin polymerization in vitro by enhancing nucleation and decreasing critical monomer concentration at steady state. Furthermore, Li+ stabilizes actin polymers mainly by lowering the absolute value of the dissociation rate constant (K-) and shifting (towards lower values of actin monomer concentrations) the range of G-actin concentrations in which filament-subunit flux can occur. The influence of Li+ on actin and tubulin polymerization in vitro suggests that cytoskeletal structures could be some of the cytoplasmic targets of this ion.
SUBMITTER: Colombo R
PROVIDER: S-EPMC1150155 | biostudies-other | 1991 Mar
REPOSITORIES: biostudies-other
ACCESS DATA