Direct electrochemistry of two genetically distinct flavodoxins isolated from Azotobacter chroococcum grown under nitrogen-fixing conditions.
Ontology highlight
ABSTRACT: Two genetically distinct flavodoxins, designated AcFldA and AcFldB, were isolated from Azotobacter chroococcum (MCD1155) grown under nitrogen-fixing conditions. AcFldA and AcFldB differ in their midpoint potentials for the semiquinone-hydroquinone couple (Em -305 mV and -520 mV respectively). Only AcFldB was competent to act as an electron donor to the Mo-containing nitrogenase of A. chroococcum. The N-terminal amino acid sequence (20 residues) of AcFldB was identical with that predicted from the nifF DNA sequence of A. vinelandii OP [Bennett, Jacobsen & Dean (1988) J. Biol. Chem. 263, 1364-1369], suggesting that AcFldB is the nifF gene product of A. chroococcum (MCD1155). Direct fast reversible electrochemistry of these flavodoxins has been achieved at a polished edge-plane graphite electrode using the aminoglycoside neomycin as a promoter. The heterogeneous rates of electron transfer between the graphite electrode and AcFldA and AcFldB were determined to be 1.2 x 10(-3) cm.s-1 and 2.0 x 10(-3) cm.s-1 respectively. The natures of two minor species of flavodoxin designated AcFldC and AcFldD, which were resolved by f.p.l.c., are also discussed.
SUBMITTER: Bagby S
PROVIDER: S-EPMC1151234 | biostudies-other | 1991 Jul
REPOSITORIES: biostudies-other
ACCESS DATA