Contribution of nitric oxide synthase to luminol-dependent chemiluminescence generated by phorbol-ester-activated Kupffer cells.
Ontology highlight
ABSTRACT: Phorbol 12-myristate 13-acetate-induced luminol chemiluminescence in rat Kupffer cells was doubled by the addition of L-arginine and significantly (up to 70%) inhibited by NG-nitro-L-arginine and NG-monomethyl-L-arginine, competitive inhibitors of L-arginine-dependent nitric oxide (NO) formation. The release of superoxide anion (O2-) by NADPH oxidase was neither affected by L-arginine nor by the inhibitors. Only very slight luminol chemiluminescence was detectable in lipopolysaccharide-pretreated Kupffer cells, a condition in which significant amounts of NO were formed but no O2-. In a cell-free system, significant luminol chemiluminescence only occurred when both authentic NO and the O2-/H2O2- generating system xanthine/xanthine oxidase were present. The results indicate that luminol chemiluminescence in phorbol-ester-activated Kupffer cells largely depends on L-arginine metabolism by NO synthase, requiring the concurrent formation of NO and O2-/H2O2.
SUBMITTER: Wang JF
PROVIDER: S-EPMC1151582 | biostudies-other | 1991 Oct
REPOSITORIES: biostudies-other
ACCESS DATA