Biosynthesis of medium-chain fatty acids by mammary epithelial cells from virgin rats.
Ontology highlight
ABSTRACT: Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.
Project description:Malonyl/acetyltransferase (MAT) is a crucial functional domain of fatty acid synthase (FASN), which plays a vital role in the de novo synthesis of fatty acids in vivo. Milk fatty acids are secreted by mammary epithelial cells. Mammary epithelial cells are the units of mammary gland development and function, and it is a common model for the study of mammary gland tissue development and lactation. This study aimed to investigate the effects of MAT deletion on the synthesis of triacylglycerol and medium-chain fatty acids. The MAT domain was knocked out by CRISPR/Cas9 in the goat mammary epithelial cells (GMECs), and in MAT knockout GMECs, the mRNA level of FASN was decreased by approximately 91.19% and the protein level decreased by 51.83%. The results showed that MAT deletion downregulated the contents of triacylglycerol and medium-chain fatty acids (p < 0.05) and increased the content of acetyl-Coenzyme A (acetyl-CoA) (p < 0.001). Explicit deletion of MAT resulted in significant drop of FASN, which resulted in downregulation of LPL, GPAM, DGAT2, PLIN2, XDH, ATGL, LXRα, and PPARγ genes in GMECs (p < 0.05). Meanwhile, mRNA expression levels of ACC, FASN, DGAT2, SREBP1, and LXRα decreased following treatment with acetyl-CoA (p < 0.05). Our data reveals that FASN plays critical roles in the synthesis of medium-chain fatty acids and triacylglycerol in GMECs.
Project description:Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.
Project description:In humans, fatty acid elongase 7 (ELOVL7) plays a role in synthesis of long-chain saturated fatty acids. Whether ELOVL7 protein plays a role in ruminants is unclear. The transcript abundance of ELOVL7 in goat mammary tissue was assessed at three stages of lactation. Results showed that ELOVL7 had the highest expression in the dry period compared with peak and late lactation period. Results revealed that ELOVL7 overexpression was correlated with lower expression in diacylglycerol O-acyltransferase 2 (DGAT2) and stearoyl-CoA desaturase 1 (SCD1), and had no significant effect on triacylglycerol concentration. Overexpression of ELOVL7 significantly decreased the concentration of palmitoleic (C16:1n7) and oleic (C18:1n9) acid, and increased the concentration of vaccenic (C18:1n7) and linoleic (C18:2) acid. Overexpression of ELOVL7 significantly upregulated the elongation index of C16:1 in goat epithelial mammary cells (GMEC), but had a minor effect on that of palmitate (C16:0). Knockdown of ELOVL7 decreased mRNA expression of fatty acid binding protein 3 (FABP3) and fatty acid desaturase 2 (FADS2) and had a minor effect on triacylglycerol concentration; however, it increased concentration of C18:1n9 in GMEC. The elongation indices of C16:0 and C16:1 did not differ due to knockdown of ELOVL7. The minor change for the C16:0 and stearate (C18:0) was observed after activation of ELOVL7, suggesting the two fatty acids are not the preferential substrates of ELOVL7 in cultured GMEC. However, changes in C18:1n9 and C18:2 after overexpression or knockdown of ELOVL7 indicated a biological functional role of ELOVL7. Collectively, our data highlighted a role of ELOVL7 in long-chain unsaturated fatty acid elongation in goat mammary epithelial cells.
Project description:Concerns about global warming, fossil-fuel depletion, food security, and human health have promoted metabolic engineers to develop tools/strategies to overproduce microbial functional oils directly from renewable resources. Medium-chain fatty acids (MCFAs, C8-C12) have been shown to be important sources due to their diverse biotechnological importance, providing benefits ranging from functional lipids to uses in bio-fuel production. However, oleaginous microbes do not carry native pathways for the production of MCFAs, and therefore, diverse approaches have been adapted to compensate for the requirements of industrial demand. Mucor circinelloides is a promising organism for lipid production (15-36% cell dry weight; CDW) and the investigation of mechanisms of lipid accumulation; however, it mostly produces long-chain fatty acids (LCFAs). To address this challenge, we genetically modified strain M. circinelloides MU758, first by integrating heterologous acyl-ACP thioesterase (TE) into fatty acid synthase (FAS) complex and subsequently by modifying the ?-oxidation pathway by disrupting the acyl-CoA oxidase (ACOX) and/or acyl-CoA thioesterase (ACOT) genes with a preference for medium-chain acyl-CoAs, to elevate the yield of MCFAs. The resultant mutant strains (M-1, M-2, and M-3, respectively) showed a significant increase in lipid production in comparison to the wild-type strain (WT). MCFAs in M-1 (47.45%) was sharply increased compared to the wild type strain (2.25%), and it was further increased in M-2 (60.09%) suggesting a negative role of ACOX in MCFAs production. However, MCFAs in M-3 were much decreased compared to M-1,suggesting a positive role of ACOT in MCFAs production. The M-2 strain showed maximum lipid productivity (~1800 milligram per liter per day or mg/L.d) and MCFAs productivity (~1100 mg/L.d). Taken together, this study elaborates on how the combination of two multidimensional approaches, TE gene over-expression and modification of the ?-oxidation pathway via substantial knockout of specific ACOX gene, significantly increased the production of MCFAs. This synergistic approach ultimately offers a novel opportunity for synthetic/industrial biologists to increase the content of MCFAs.
Project description:The proportion of C(8:0) and C(10:0) fatty acids synthesized by the microsomal plus particle-free supernatant fraction from lactating rabbit mammary gland is enhanced at high protein concentrations. This fraction appears to contain a soluble high-molecular-weight factor that modifies the specificity of the fatty acid synthetase complex for termination of the growing acyl chain.
Project description:Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.
Project description:Background & aimsKetogenic medium-chain fatty acids (MCFAs) with profound health benefits are commonly found in dairy products, palm kernel oil and coconut oil. We hypothesize that magnesium (Mg) supplementation leads to enhanced gut microbial production of MCFAs and, in turn, increased circulating MCFAs levels.MethodsWe tested this hypothesis in the Personalized Prevention of Colorectal Cancer Trial (PPCCT) (NCT01105169), a double-blind 2 × 2 factorial randomized controlled trial enrolling 240 participants. Six 24-h dietary recalls were performed for all participants at the baseline and during the intervention period. Based on the baseline 24-h dietary recalls, the Mg treatment used a personalized dose of Mg supplementation that would reduce the calcium (Ca): Mg intake ratio to around 2.3. We measured plasma MCFAs, sugars, ketone bodies and tricarboxylic acid cycle (TCA cycle) metabolites using the Metabolon's global Precision Metabolomics™ LC-MS platform. Whole-genome shotgun metagenomics (WGS) sequencing was performed to assess microbiota in stool samples, rectal swabs, and rectal biopsies.ResultsPersonalized Mg treatment (mean dose 205.58 mg/day with a range from 77.25 to 389.55 mg/day) significantly increased the plasma levels of C7:0, C8:0, and combined C7:0 and C8:0 by 18.45%, 25.28%, and 24.20%, respectively, compared to 14.15%, 10.12%, and 12.62% decreases in the placebo arm. The effects remain significant after adjusting for age, sex, race and baseline level (P = 0.0126, P = 0.0162, and P = 0.0031, respectively) and FDR correction at 0.05 (q = 0.0324 for both C7:0 and C8:0). Mg treatment significantly reduced the plasma level of sucrose compared to the placebo arm (P = 0.0036 for multivariable-adjusted and P = 0.0216 for additional FDR correction model) whereas alterations in daily intakes of sucrose, fructose, glucose, maltose and C8:0 from baseline to the end of trial did not differ between two arms. Mediation analysis showed that combined C7:0 and C8:0 partially mediated the effects of Mg treatment on total and individual ketone bodies (P for indirect effect = 0.0045, 0.0043, and 0.03, respectively). The changes in plasma levels of C7:0 and C8:0 were significantly and positively correlated with the alterations in stool microbiome α diversity (r = 0.51, p = 0.0023 and r = 0.34, p = 0.0497, respectively) as well as in stool abundance for the signatures of MCFAs-related microbiota with acyl-ACP thioesterase gene producing C7:0 (r = 0.46, p = 0.0067) and C8:0 (r = 0.49, p = 0.003), respectively, following Mg treatment.ConclusionsOptimizing Ca:Mg intake ratios to around 2.3 through 12-week personalized Mg supplementation leads to increased circulating levels of MCFAs (i.e. C7:0 and C8:0), which is attributed to enhanced production from gut microbial fermentation and, maybe, sucrose consumption.
Project description:1. Injection of adrenaline into 24 h-starved rats caused a 69% decrease in blood [ketone-body] (3-hydroxybutyrate plus acetoacetate), accompanied by a decreased [3-hydroxybutyrate]/[acetoacetate] ratio. Blood [glucose] and [lactate] increased, but [alanine] was unchanged. 2. Adrenaline also decreased [ketone-body] after intragastric feeding of both long- and medium-chain triacylglycerol. The latter decrease was observed after suppression of lipolysis with 5-methylpyrazole-3-carboxylic acid, indicating that the antiketogenic action of adrenaline was not dependent on the chain length of the precursor fatty acid. 3. The actions of adrenaline to decrease blood [ketone-body] and to increase blood [glucose] were not observed after administration of 3-mercaptopicolinate, an inhibitor of gluconeogenesis. This suggests that these effects of the hormone are related. 4. The possible clinical significance of the results is discussed with reference to the restricted ketosis often observed after surgical or orthopaedic injury.
Project description:The triglyceride of heptanoate (C7 fatty acid), triheptanoin, is a tasteless oil used to treat rare metabolic disorders in USA and France. Heptanoate is metabolized by β-oxidation to provide propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis - the refilling of the tricarboxylic acid cycle. Heptanoate is also metabolized by the liver to the C5 ketones, β-ketopentanoate and/or β-hydroxypentanoate, which are released into the blood and thought to enter the brain via monocarboxylate transporters. Oral triheptanoin has recently been discovered to be reproducibly anticonvulsant in acute and chronic mouse seizures models. However, current knowledge on alterations of brain metabolism after triheptanoin administration and anaplerosis via propionyl-CoA carboxylation in the brain is limited. This review outlines triheptanoin's unique anticonvulsant profile and its clinical potential for the treatment of medically refractory epilepsy. Anaplerosis as a therapeutic approach for the treatment of epilepsy is discussed. More research is needed to elucidate the anticonvulsant mechanism of triheptanoin and to reveal its clinical potential for the treatment of epilepsy and other disorders of the brain.
Project description:Several studies have demonstrated the expression of odorant receptors (OR) in various human tissues and their involvement in different physiological and pathophysiological processes. However, the functional role of ORs in the human heart is still unclear. Here, we firstly report the functional characterization of an OR in the human heart. Initial next-generation sequencing analysis revealed the OR expression pattern in the adult and fetal human heart and identified the fatty acid-sensing OR51E1 as the most highly expressed OR in both cardiac development stages. An extensive characterization of the OR51E1 ligand profile by luciferase reporter gene activation assay identified 2-ethylhexanoic acid as a receptor antagonist and various structurally related fatty acids as novel OR51E1 ligands, some of which were detected at receptor-activating concentrations in plasma and epicardial adipose tissue. Functional investigation of the endogenous receptor was carried out by Ca2+ imaging of human stem cell-derived cardiomyocytes. Application of OR51E1 ligands induced negative chronotropic effects that depended on activation of the OR. OR51E1 activation also provoked a negative inotropic action in cardiac trabeculae and slice preparations of human explanted ventricles. These findings indicate that OR51E1 may play a role as metabolic regulator of cardiac function.