The intramitochondrial volume measured using sucrose as an extramitochondrial marker overestimates the true matrix volume determined with mannitol.
Ontology highlight
ABSTRACT: The matrix volume of isolated liver and heart mitochondria has been estimated at various osmolarities and in various osmotic supports using 36Cl- and [14C]sucrose, D-mannitol, D-3-methoxyglucose and choline as extramitochondrial markers. The use of 3-methoxyglucose was only possible at 0 degree C since it entered mitochondria at physiological temperatures. All extramitochondrial markers used gave linear plots of apparent matrix volume against the reciprocal of the osmolarity, but the slope of this plot was greater when sucrose was used than with the other extramitochondrial markers. When extrapolated to infinite osmolarity the mean matrix volume was zero when mannitol was used, but about 0.6 microliter/mg of protein for sucrose and Cl- and -0.4 microliter/mg of protein when choline was used. At physiological osmolarity (about 330 m-osmol) the mean matrix volume of de-energized liver mitochondria in KCl medium estimated using mannitol was 0.46 microliter/mg of protein, whereas that obtained using sucrose was 1.68 microliters/mg of protein. Values in mannitol, choline and sucrose media were similar when mannitol but not sucrose was used as extramitochondrial marker. It is argued that the 3H2O/[14C]mannitol space more accurately reflects the true mitochondrial matrix volume than does the 3H2O/[14C]sucrose space. The consequences of this for measurements of the protonmotive force and the intramitochondrial concentration of metabolites are discussed.
SUBMITTER: Halestrap AP
PROVIDER: S-EPMC1152259 | biostudies-other | 1983 Aug
REPOSITORIES: biostudies-other
ACCESS DATA