Early changes in inositol lipids and their metabolites induced by platelet-derived growth factor in quiescent Swiss mouse 3T3 cells.
Ontology highlight
ABSTRACT: Inositol lipid turnover was studied in quiescent Swiss mouse 3T3 cells stimulated by platelet-derived growth factor (PDGF). Stimulation of the cells by PDGF for 10 min at 37 degrees C induced the following changes in lipids: in cells prelabelled with [32P]Pi, a 28% decrease in [32P]phosphatidylinositol 4,5-bisphosphate, a 41% decrease in [32P]phosphatidylinositol 4-phosphate and a 1.7-fold increase in the 32P-labelling of phosphatidic acid; in cells prelabelled with [3H8]arachidonic acid, a 17.9-fold increase in [3H]phosphatidic acid, a 20% decrease in [3H]phosphatidylinositol (PtdIns), an 8.6-fold increase in [3H]arachidonic acid released into the medium, a 57-fold increase in [3H]prostaglandin E2 in the medium, and a 5.3-fold increase in [3H]monoacylglycerol released into the medium (the last was identified as the 2-acyl derivative); in cells prelabelled with [2-3H]glycerol, a 1.7-fold increase in [3H]diacylglycerol, a 6.7-fold increase in [3H]phosphatidic acid, a 1.6-fold increase in [3H]lysophosphatidylcholine (lysoPtdCho), a 9% decrease in [3H]PtdIns, and a 1.6-fold increase in [3H]monoacylglycerol released into the medium. PDGF stimulated the formation of inositol tris-, bis- and mono-phosphates in the cells prelabelled with myo-[2-3H]inositol. These results indicate that, in Swiss 3T3 cells stimulated by PDGF, diacylglycerol produced by the hydrolysis of inositol lipids is partly degraded to 2-acylglycerol and partly converted into phosphatidic acid. The increase in lysoPtdCho indicates that a portion of arachidonic acid released from the stimulated cells is formed by the hydrolysis of PtdCho with a phospholipase A2. Different values of half-maximal doses of the partially purified PDGF used in this study were found for the various responses of quiescent Swiss 3T3 cells to PDGF. The values for half-maximal doses suggest that activation of a fraction of the cell-surface receptor for PDGF is sufficient for mitogenesis and for an increase in the cytoplasmic free Ca2+ concentration, and that the PGDF-stimulated lipid metabolism is probably proportional to the number of receptor sites activated by PDGF.
SUBMITTER: Hasegawa-Sasaki H
PROVIDER: S-EPMC1152845 | biostudies-other | 1985 Nov
REPOSITORIES: biostudies-other
ACCESS DATA