Unusual ultrastructure of complement-component-C4b-binding protein of human complement by synchrotron X-ray scattering and hydrodynamic analysis.
Ontology highlight
ABSTRACT: Solution X-ray-scattering experiments with the use of synchrotron radiation on the human complement-component-C4b-binding protein showed that its RG is 13 nm and that its Mr is 550,000. From the known primary amino acid sequence and estimated carbohydrate content, C4b-binding protein is inferred to have a total of 7.4 +/- 1 subunits. Heptameric computer models for C4b-binding protein were based on the X-ray-scattering curve to a resolution of 6.4 nm, and literature values for sedimentation coefficients and electron-microscopy images. The macromolecule was represented by a bundle of seven arms held together at the C-terminal end and spaced out by a base containing 23% of C4b-binding protein by volume. If the overall length of each arm is assumed to be 33 nm as seen in electron microscopy, the solution data indicate an average arm-axis angle of 5-10 degrees. The seven arms of C4b-binding protein are found to be close together, in distinction to the splayed-out images seen in electron micrographs.
SUBMITTER: Perkins SJ
PROVIDER: S-EPMC1153101 | biostudies-other | 1986 Feb
REPOSITORIES: biostudies-other
ACCESS DATA