Analysis by lectin affinity chromatography of N-linked glycans of BHK cells and ricin-resistant mutants.
Ontology highlight
ABSTRACT: Normal baby hamster kidney (BHK) fibroblasts and ricin-resistant (RicR) mutants of BHK cells derived from them were labelled metabolically with [3H]mannose or [3H]fucose. Glycopeptides obtained by digestion of disrupted cells with Pronase were separated by affinity chromatography on concanavalin A-Sepharose. In the normal BHK cells major glycopeptide fractions were obtained consisting of tetra- and tri-antennary sialylated complex glycans, bi-antennary sialylated glycans, and neutral oligomannosidic chains. The majority of bi-antennary chains were shown to contain a fucosyl-(alpha 1-6)-N-acetylglucosaminyl sequence in the core region by their ability to bind to a lentil lectin affinity column. All of the mutant cell lines examined were found to accumulate oligomannosidic glycans in cellular glycoproteins: complex sialylated glycans were either absent or greatly reduced in amount. Analysis of fractions isolated from concanavalin A-Sepharose by Bio-Gel P-4 chromatography and glycosidase degradation indicated that the glycans accumulating in RicR14 cells have the general structure: (formula; see text) and derivatives having fewer alpha-mannosyl units. We have also analysed the glycopeptides released by trypsin treatment from the surface of the normal and mutant cells, as well as those obtained by proteolysis of fibronectin isolated from the medium. The glycopeptide profiles of the cell-surface-derived material and of fibronectin showed for the mutant cells a marked accumulation of oligomannosidic chains at the expense of complex oligosaccharide chains. Hence, the alterations in glycan structure detected in bulk cellular glycoproteins of RicR cells are expressed also in cell surface glycoproteins and in fibronectin, a secreted glycoprotein.
SUBMITTER: Hughes RC
PROVIDER: S-EPMC1154402 | biostudies-other | 1983 Jun
REPOSITORIES: biostudies-other
ACCESS DATA